
DEEP LEARNING ON GRAPH-STRUCTURED DATA

by

TONG ZEKUN
(B.S., Xidian University)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

INDUSTRIAL SYSTEMS ENGINEERING

in the

GRADUATE DIVISION

of the

NATIONAL UNIVERSITY OF SINGAPORE

2022

Supervisor:
Professor Chee Yeow Meng

Examiners:
Associate Professor Huang Zhiyong

Assistant Professor Li Xiaobo

Declaration

I hereby declare that this thesis is my original work and it has
been written by me in its entirety. I have duly

acknowledged all the sources of information which have
been used in the thesis.

This thesis has also not been submitted for any
degree in any university previously.

Tong Zekun

07 February 2023

To my dear parents

i

Acknowledgments

Upon completion of this Ph.D. thesis, I would like to extend my deepest gratitude
to those who have supported me over the past four years. The opportunity to earn
a doctorate is made possible by their professional guidance and kind patience.

I would like to express my sincere gratitude to Prof. Chee Yeow Meng and Prof.
Andrew Lim for their valuable suggestions and supervision during the course of my
Ph.D. degree. I would also like to thank Prof. David S. Rosenblum, Prof. Chen
Caihua, Prof. Li Chongshou and Prof. Tang Jing for their treasured help in my
research path. Moreover, I would like to thank Dr. Liang Yuxuan for his hands-on
guidance which was really influential in shaping my research topic. Meanwhile, I
would like to express appreciation to my co-authors and discussants: Dr. Wu Yuwei,
Mr. Li Xinke, Mr. Dai Yongxing, Mr. Sun Changsheng, Dr. Ding Henghui, Mr. Cai
Xu and Mr. Wang Jingyang. This thesis is inseparable from their abundant advice.

In addition, I wish to gratefully mention my teammates, colleagues, and friends
who have been extremely helpful to me in my research and life journey. They are,
Dr. Zhao Huangjie, Dr. Zhao Yue, Dr. Huang Yuming, Dr. Wang Shixiong, Dr.
Li Jingwen, Mr. Hu Kanxin, Mr. Lu Zedi, Mr. Cong Qianhao, Mr. Yuan Yiliang,
Dr. Che Yuxin, Dr. Pan Binbin, Dr. Wei Xiaoyang, Ms. Zhao Jingyi, Mr. Yabang
Zhao, Mr. Ma Yining, Mr. Chen Zhirui, Dr. Zhang Hui, Mr. Xie Jinbin, Dr. Zhu
Yuqin, and many other friends.

Finally, I would like to express my gratitude to my parents and my girlfriend,
who were always there cheering me up and stood by me through up-and-downs
during the past few years.

ii

Contents

Acknowledgments ii

Abstract vi

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Background . 1
1.2 Motivations . 4
1.3 Objectives and Contributions . 6
1.4 Organization . 7

2 Literature Review and Preliminaries 10
2.1 Graph Neural Networks . 10

2.1.1 General Pipeline . 11
2.1.2 Learning Tasks . 12
2.1.3 Graph Types . 12
2.1.4 Computational Modules . 13
2.1.5 Learning Methods . 14

2.2 Graph Convolutional Networks . 16
2.2.1 Spatial-based Methods . 17
2.2.2 Spectral-based Methods . 19

2.3 Graph Contrastive Learning . 21
2.3.1 Data Augmentation Framework 23
2.3.2 Graph Data Augmentation 25

iii

2.4 Summary . 28

3 Second-order Graph Convolution 29
3.1 Introduction . 29
3.2 Undirected Graph Convolution and its Limitations 32

3.2.1 Undirected Graph Laplacian 32
3.2.2 Undirected Graph Convolution 34
3.2.3 Usage Limitations on Directed Graph 35

3.3 Second-order Directed Graph Convolution 38
3.3.1 First- and Second-order Proximity 38
3.3.2 Second-order Directed Graph Convolution 41
3.3.3 Implementation . 44
3.3.4 Discussion . 45

3.4 Experiments . 49
3.4.1 Datasets and Baselines . 49
3.4.2 Experimental Setup . 50
3.4.3 Experimental Results . 51

3.5 Summary . 57

4 PageRank-based Graph Convolution 58
4.1 Introduction . 58
4.2 PageRank-based Directed Graph Convolution 60

4.2.1 Directed Graph Laplacian based on PageRank 60
4.2.2 Approximate Directed Graph Laplacian based on Personalized

PageRank . 62
4.2.3 Directed Graph Convolution 67

4.3 Directed Graph Inception Network 68
4.3.1 Scalable Receptive Field based on kth-order Proximity 68
4.3.2 Multi-scale Inception Network Structure 69

4.4 Experiments . 73
4.4.1 Experimental Settings . 73
4.4.2 Semi-supervised Node Classification 74
4.4.3 Link Prediction . 82

iv

4.5 Summary . 84

5 Contrastive Graph Learning 85
5.1 Introduction . 85
5.2 Directed Graph Data Augmentation 87

5.2.1 Directed Graph Laplacian and its Approximation 87
5.2.2 Directed Graph Data Augmentation with Laplacian Perturbation 88
5.2.3 Justification of Laplacian Perturbation 90

5.3 Directed Graph Contrastive Learning 94
5.3.1 Learning with Dynamic-view Contrastive Objective 94
5.3.2 Training using Multi-task Curriculum Learning 96

5.4 Experiments . 99
5.4.1 Experimental Settings . 99
5.4.2 Experimental Results . 104

5.5 Summary . 112

6 Conclusion and Future Work 113
6.1 Conclusion . 113
6.2 Future Work . 115

Publications during PhD Study 117

Bibliography 119

v

Abstract

Deep Learning on Graph-structured Data

by

Tong Zekun

Doctor of Philosophy in Industrial Systems Engineering

National University of Singapore

Deep learning methods are becoming widely attractive for tackling difficult real-
world problems. It can not only handle grid-like data, such as images, but also
process non-Euclidean data, such as graphs. Graph-structured data is ubiquitous,
from abstract molecular structures to figurative road networks, it records connections
between entities with an efficient data structure. As a generalized deep learning
architecture for graphs, Graph Neural Networks (GNNs) are widely utilized to
process this graph-structured data in a variety of real-world tasks, including traffic
prediction, social network analysis, drug discovery, and etc.

GNNs can derive variants suitable for different graph types, such as directed
and undirected, homogeneous and heterogeneous, and static and dynamic graphs,
by adjusting the model structure. Among these graph types, the use of GNNs
in directed graphs is still in its infancy. For directed graphs, edges describe the
relationships and interactions between distinct nodes, particularly the orientation,
which is a specific attribute. Existing GNN approaches and frameworks are still
insufficient to process directed graphs in terms of spectral-based convolution, model
structure, and learning methods. To expand the field of graph deep learning into
directed graphs, we propose several methods to address these limitations.

Firstly, we extend spectral-based graph convolution to directed graphs using first-
and second-order proximity, which can not only retain the connection properties of
the directed graph, but also expand the receptive field of the convolution operation.
A new directed graph convolutional network (DGCN) model is then designed to learn
representations on the directed graph, leveraging both the first- and second-order
proximity information. We empirically show the fact that graph convolution working

vi

only with DGCNs can encode more useful information from graph and help achieve
better performance when generalized to other models.

Secondly, we theoretically extend spectral-based graph convolution to directed
graphs and derive a simplified form using personalized PageRank. Specifically, we
present Directed Graph Inception Convolutional Networks (DiGCN), which utilizes
directed graph convolution and kth-order proximity to achieve larger receptive fields
and learn multi-scale features in directed graphs. We empirically show that DiGCN
can encode more structural information from directed graphs than GCNs and help
achieve better performance when generalized to other models.

Finally, we design a directed graph data augmentation method called Laplacian
perturbation and theoretically analyze how it provides contrastive information
without changing the directed graph structure. Moreover, we present a Directed
Graph Contrastive Learning (DiGCL) framework, which dynamically learns from
all possible contrastive views generated by the Laplacian perturbation. Then we
train it using multi-task curriculum learning to progressively learn from multiple
easy-to-difficult contrastive views. We empirically show that our model can retain
more structural features of directed graphs than other graph contrastive learning
models because of its ability to provide complete contrastive information.

Our works in this thesis expand the use of GNNs to directed graphs in three
ways: spectral-based convolution, model structure, and learning method. Given
the effectiveness and efficiency demonstrated in experiments, our proposed works
outperform other state-of-the-art methods on citation networks and co-purchase
datasets. In future, we will further investigate the graph deep learning with various
graph types under more complex application scenarios.

vii

List of Figures

1.1 Graph-structured data in real world. 2
1.2 Illustration of CNNs and GNNs. 4
1.3 The organization of this thesis. 9

2.1 General pipeline for a GNN model and the connection with our methods. 11
2.2 Neighborhood sampling and information aggregation in GraphSAGE. . 18
2.3 Illustration of Graph Data Augmentation. 24

3.1 A simple directed graph example. 31
3.2 Simple example of an undirected graph and its Laplacian matrix. . . . 33
3.3 First- and second-order proximity examples in a directed graph. 39
3.4 The schematic depiction of DGCN for semi-supervised learning. 44
3.5 2D t-SNE visualizations . 53
3.6 Effects to classification accuracy when DGCN goes deeper. 55
3.7 Accuracy in validation and test set. 55
3.8 Accuracy for different training set sizes. 56

4.1 Illustration of conversion with PageRank-based methods 63
4.2 Illustration of kth -order proximity. 68
4.3 Illustration of Inception block of lth layer. 70
4.4 Number of edges per Inception block. 72
4.5 The schematic depiction of model using directed graph convolution. . . 76
4.6 The schematic depiction of DiGCN for semi-supervised learning. 77
4.7 Val accuracy on Cora-ML and Am-Photo. 77
4.8 Experiments on α and training time. 80
4.9 Experiments on model depth, fusion function and generalization. 81
4.10 Link prediction results on different datasets 83

viii

5.1 Illustration of Laplacian perturbation. 90
5.2 Illustration of our DiGCL model using Laplacian perturbation. 94
5.3 Definition of different families of pacing functions 97
5.4 Experiments on pacing function and Laplacian perturbation. 106
5.5 Experiments on perturbation error and data augmentation time. 108
5.6 Experiments on model running time and graph classification task. . . . 109
5.7 Performance of node classification task with different pacing functions. 110
5.8 Validation accuracy of node classification task. 111

ix

List of Tables

2.1 Comparison of different GCL methods. 23
2.2 Summary of existing data augmentations. 26

3.1 Datasets Details . 50
3.2 Mean test accuracy and standard deviation in percent. 52
3.3 Smoothness values of First- and Second-order Proximity. 53
3.4 Accuracy of origin SGC and generalized SGC. 54

4.1 Generalization of Inception block. 72
4.2 Datasets Details . 74
4.3 The hyper-parameters of baselines. 75
4.4 The hyper-parameters of DiGCN model. 77
4.5 Overall accuracy and training time of node classification task. 79
4.6 Node classification results at various depths. 81
4.7 The hyper-parameters of link prediction models. 83

5.1 Datasets Details for Node Classification 100
5.2 Dataset Details for Graph Classification 100
5.3 The implementations of the baselines on the node classification task. . 101
5.4 The hyperparameters of our models. 102
5.5 The hyperparameters on graph classification task. 102
5.6 The hyperparameters of baselines for node classification task. 103
5.7 Accuracy (%) of node classification task with STD. 105
5.8 Overall accuracy (%) with STD with various data augmentation methods.107

x

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background
The use of deep learning methods to tackle difficult real-world problems is

growing in popularity [93]. All kinds of image-related tasks, including classification
[92], semantic segmentation [17], and object detection [139, 59], have benefited from
the use of these deep learning approaches, and the results have been encouraging.
In addition to image recognition, deep learning techniques have shown promising
results in the area of natural language processing [23, 111], specifically in the form
of neural machine translation [4]. Data for such tasks often lend themselves to
grid-based representations. This enables the use of kernel-based operations such as
convolution and pooling in the form of local filters that scan each position on the
input. Convolutional Neural Networks (CNNs) are a type of deep learning neural
network that are commonly used in processing grid-based data [2]. Unlike traditional
hand-crafted filters, the local filters used in convolutional layers are trainable. By
learning the weights of these trainable filters, the networks can automatically decide
what kind of features to extract, thereby eliminating the need for manual feature
extraction [174]. However, the real-world task has its charms, not least of which
is that the data does not always appear grid-like and instead is distributed in an
irregular domain, such as graph-structured data [63].

Graph-structured data is ubiquitous and exists widely in various real-world
problem scenarios. Figure 1.1 provides an illustration of graph-structured data in
real-world. We can group these scenarios into two main categories: explicit structure
scenarios and implicit structure scenarios. Explicit structure scenarios imply that

1

CHAPTER 1. INTRODUCTION

Point Cloud Traffic Network

Text Graph

ProteinMolecule

Social Network Graph

Figure 1.1: Graph-structured data in real world.

the data to be analyzed is naturally organized into graph structures, such as traffic
networks [150, 108, 6], knowledge graphs [171, 175, 218], recommender systems [137,
29, 154], transaction networks [184, 169, 21] and etc. Implicit structure scenarios
require artificially mining and organizing into graph structures based on the original
data. For example, convert connections between images/point cloud into graph [196,
146], or connections between texts [74, 217].

As an extension of deep learning beyond grid-like domains, Graph Neural Net-
works (GNNs) [55, 28] are intended to handle non-Euclidean graph structures that
are intractable to previous deep learning techniques. They use graph data as input
and effectively learn the underlying pairwise relations among data nodes, which are
widely used in numerous problems to process graph-structured data. We list some
examples of real-world problems using GNNs to learn from graph data as follows.

• Chemistry. Several GNN models have been proposed to solve chemistry-
related problems, which involve molecular systems [44, 143, 32], crystalline
materials [197, 14], surface chemistry [125, 3], heterogeneous catalysis [50], etc.

2

CHAPTER 1. INTRODUCTION

The structures are described in terms of topological relationships, where atoms
are represented as nodes, and the relationships between them are represented
as edges.

• Biology. Prediction of disease association [128, 172], drug development and
discovery [76, 106], prediction of interactions of biological entities [30, 37] are
common areas where GNNs are currently used in bioinformatics [215].

• Traffic Networks. Traffic network is one of the most exposed, common, and
visible graph structures in people’s daily life. GNN-based model can be used
for a wide range of traffic prediction problems, for example, traffic flow forecast
[150, 108], traffic speed forecast [208, 210], human/vehicle trajectory prediction
[99, 116], taxi supply and demand forecast [42, 6], etc.

• Recommender Systems. Most of the information in a recommender system
has a graph structure, such as social relationships [36], knowledge graphs [171,
175], user-item interaction graphs [80], and etc. GNNs are capable of capturing
higher-order interaction and can effectively integrate edge information from
social relationships and knowledge graphs [190].

• Computer Vision (CV). An image can be represented as a spatial map, and
image regions are frequently spatially and semantically interdependent. Video
can also be represented as spatio-temporal graphs, with each node representing
a region of interest in the video and the edges representing the relationships
between such regions [188]. GNNs can be utilized naturally to extract patterns
from these graphs and facilitate associated CV tasks, such as image object
detection [199], image classification [67], video classification [176], etc. GNNs
are also widely used in 3D CV, for example in point clouds [183, 104].

• Natural Language Processing (NLP). Graph is a natural method to
capture the relationships between various components of the text, such as
entities, sentences, and documents, to exploit the underlying linguistic and
semantic structures of the text [188]. For NLP tasks that involve labeling
words or phrases, they can be converted to a node classification task [204, 107].
In addition, predicting the relationships between two text elements is also a
vital problem [53, 95].

3

CHAPTER 1. INTRODUCTION

1.2 Motivations
Due to the diversity of graph types, such as directed/undirected graphs, ho-

mogeneous/heterogeneous graphs, etc., GNNs need to design different networks
for the structural characteristics of different input graph data [188]. Among these
graph types, learning from directed graph data to solve practical problems is gaining
popularity, such as neural architecture representation and automatic design [13, 31],
causality inference [79, 62] and the implication graph of SAT solvers [194]. How-
ever, the presence of rich directed structural features and asymmetric connectivity
relations in directed graphs poses a challenge for applying deep graph neural
networks to directed graphs. In this thesis, we are dedicated to explore this new
area, extending GNNs to directed graphs.

Graph Convolutional Networks (GCNs) are the most versatile branch of GNNs.
They are variations of the classic CNNs, which are typically used for image and
video processing. The illustration is shown in Figure 1.2. The key difference is
that GCNs use graph-based convolutional layers to process the data, rather than
traditional grid-based convolutional layers. This allows GCNs to capture complex
relationships and dependencies between nodes in a graph, making them well suited
for tasks such as node classification and link prediction.

Figure 1.2: Illustration of CNNs (left) and GNNs (right) [192]. CNNs are specifically
tailored to process regular, structured data in Euclidean spaces, while GNNs are
more generalized versions that can handle irregular or non-Euclidean structured
data with variable node connections and unordered nodes.

However, most spectral-based GCNs work only with undirected graphs [193].
They transform directed graphs to undirected by relaxing their direction structure [88,

4

CHAPTER 1. INTRODUCTION

187], i.e. adding edges to symmetric the adjacency matrices. It will mislead message
passing schemes to aggregate features with incorrect weights and discard distinctive
direction structure. In a citation graph, later articles can cite earlier ones, but not
vice versa. Several works define the structure’s motifs and inheritance relationship
[118, 84]. These methods require learning templates or rules and cannot handle
complex structures beyond their definitions. Hence, we hope to design efficient,
generalized and theoretically guaranteed directed graph convolutional networks.

In addition to theoretical extensions for directed graphs, the network structure
has room for improvement. During each convolution operation, in most existing
spectral-based GCN models, only 1-hop node features are considered, capturing
only first-order information. When extracting local features, it is natural to consider
direct links, but this is not always the case. Many legitimate relationships in real-
world graph may not be encoded via first-order links [156]. For example, social
networking members who share similar interests may not always communicate with
each other. In other words, it is likely that the features obtained by first-order
proximity are insufficient. Although it is possible to obtain more information by
stacking multiple layers of GCNs, this strategy frequently results in feature dilution
and overfitting issues as models become deeper [84, 97]. Some works [140, 198, 1],
inspired by the Inception Network for image classification [155], broaden their layers
to obtain larger receptive fields and enhance their learning capacities. However, they
employ a fixed adjacency matrix in a single layer, which makes it more challenging
to capture multi-scale features. A scalable neighborhood would provide additional
scale information, particularly for nodes belonging to communities of varying sizes.
Therefore, how to design the model network structure so that it can be applied to
directed graphs is also an urgent issue to be solved.

Moreover, existing GNNs [113, 160, 161] are trained end-to-end under supervision.
This training scheme shows excellent performance due to sufficient labeled data.
Consequently, several Graph Contrastive Learning (GCL) works [207, 136, 57]
are proposed based on GNNs and Contrastive Learning [58] to make use of rich
unlabeled data. However, these methods encounter problems when processing
directed graphs, particularly with the data augmentation method and the contrastive
learning framework. First, most of the data augmentation methods used in GCL
[207, 229, 228] do not take into account the directed graph structure and may discard

5

CHAPTER 1. INTRODUCTION

distinctive direction information. For example, the idea of dropping nodes/edges [228,
207, 180] is borrowed from random erasing used in images [220], which disregards
the disparity between nodes and edges in various graph structures. Furthermore,
conventional contrastive learning frameworks are not optimized for directed graphs
and can only learn from a limited number of contrastive views [207, 229, 57]. However,
due to the complexity of directed graphs, a small number of contrastive views is
insufficient to fully comprehend their structural characteristics [160]. We want to
design self-supervised models applicable to directed graphs for efficient contrastive
learning of unlabeled data based on the aforementioned challenges.

1.3 Objectives and Contributions
In this thesis, we focus on extending the application of deep graph neural networks

to directed graphs. From the motivations mentioned above, our objectives can be
summarized as: (1) to theoretically expand the graph spectral-based convolution
into directed graphs, (2) to design graph neural network structures that can be used
in directed graphs, and (3) to explore how to learn structural features from directed
graphs in the absence of supervision information.

To achieve the above research objectives, we first study the limitations of current
graph convolutional networks in directed graphs and construct a second-order
proximity network to learn their structural information. Second, we theoretically
extend the spectral-based graph convolution to directed graphs and build an Inception
network to learn multi-scale features. Third, we investigate self-supervised graph
learning and propose a novel data augmentation approach and a contrastive learning
framework for encoding directed graph features. The main contributions of this
thesis are summarized below.

Second-order Graph Convolution: We extend spectral-based graph convolution
to directed graphs using first- and second-order proximity, which can not only retain
the connection properties of the directed graph, but also expand the receptive field
of the convolution operation. A new GCN model, called DGCN, is then designed to
learn representations on the directed graph, leveraging both the first- and second-
order proximity information. We empirically show the fact that GCNs working only

6

CHAPTER 1. INTRODUCTION

with DGCNs can encode more useful information from graph and help achieve better
performance when generalized to other models. Moreover, extensive experiments
on citation networks and co-purchase datasets demonstrate the superiority of our
model over the state-of-the-art methods.

PageRank-based Graph Convolution: We theoretically extend spectral-based
graph convolution to directed graphs and derive a simplified form using personalized
PageRank. Specifically, we present Directed Graph Inception Convolutional Networks
(DiGCN), which utilizes directed graph convolution and kth-order proximity to
achieve larger receptive fields and learn multi-scale features in directed graphs. We
empirically show that DiGCN can encode more structural information from directed
graphs than GCNs and help achieve better performance when generalized to other
models. Moreover, experiments on various benchmarks demonstrate its superiority
over state-of-the-art methods.

Contrastive Graph Learning: We design a directed graph data augmentation
method called Laplacian perturbation and theoretically analyze how it provides
contrastive information without changing the directed graph structure. Moreover,
we present a directed graph contrastive learning framework which dynamically learns
from all possible contrastive views generated by the Laplacian perturbation. Then
we train it using multi-task curriculum learning to progressively learn from multiple
easy-to-difficult contrastive views. We empirically show that our model can retain
more structural features of directed graphs than other GCL models because of
its ability to provide complete contrastive information. Experiments on various
benchmarks reveal our dominance over the state-of-the-art approaches.

1.4 Organization
The roadmap for this thesis is outlined as follows and the main body of this

thesis is organized as shown in Figure 1.3.

• Chapter 2 reviews related research works in graph neural networks. In
this chapter, we outline the general pipeline and main modules of Graph
Neural Networks, and further discuss the most important parts: computational
modules and learning methods. For each of these two modules, we address the

7

CHAPTER 1. INTRODUCTION

work and give some preliminaries related to graph convolutional networks and
graph contrastive learning, respectively.

• Chapter 3 studies the limitations of the current graph convolution networks
applied to directed graphs and proposes a new network structure based on
second-order proximity.

• Chapter 4 is concerned with theoretical extensions of spectral-based graph
convolution and builds an inception network to learn multi-scale features in
directed graphs.

• Chapter 5 presents a study on self-supervised learning of directed graph
features using data augmentation and contrastive learning in the absence of
data labels.

• Chapter 6 concludes the thesis and outlines some potential future work.

As shown in Figure 1.3, the three methods we propose are closely related. All
three methods are designed to handle directed graph data. Among them, the
method DGCN in Chapter 3 is the first graph convolution network for directed
graphs. This method leverages first- and second-order proximity to expand the
convolution receptive field and retain directed features of the graph. However, DGCN
mainly improves the model structure and aggregation method by utilizing some
manually defined neighborhood aggregation methods to compensate for information
loss caused by converting directed graphs to undirected graphs by increasing second-
order neighbors. Hence, this method has theoretical limitations. To bridge the
theoretical gap, we present another novel approach in Chapter 4, DiGCN. DiGCN
simplifies the spectral-based graph convolution theoretically and extends it to
directed graphs by defining kth-order proximity.

DGCN and DiGCN are trained end-to-end under supervision. This training
scheme shows excellent performance by virtue of enough labeled data. However, a
large amount of data exists in an untagged form. To be able to utilize this data,
we propose DiGCL in Chapter 5, a self-supervised learning framework for directed
graphs. Based on the theory of directed graph Laplacian matrix proposed by DiGCN,
DiGCL introduces a data augmentation method that utilizes Laplacian perturbation
and curriculum learning to learn from contrastive views.

8

CHAPTER 1. INTRODUCTION

Chapter 3:
Second-order

Graph Convolution

Chapter 4:
PageRank-based

Graph Convolution

Chapter 5:
Contrastive

Graph Learning

Semi-supervised Learning Self-supervised Learning

Theoretical Extension

Structural Improvement

Theoretical Basis

Directed Graph

Learning Method

Methods

Data Type

Relationships
Feature Extractor

Figure 1.3: The organization of this thesis between three main methods.

In summary, the method DiGCN in Chapter 4 extends the theory and improves
the structure based on the method DGCN in Chapter 3, and provides the theoretical
basis and feature extractor for the method DiGCL in Chapter 5. Regarding the model
learning methods, the methods in Chapter 3 and Chapter 4 use semi-supervised
learning, while Chapter 5 uses a self-supervised learning training method.

Throughout this thesis, we will use a unified terminology system. Particularly,
we use bold capital letters (e.g., X) and bold lowercase letters (e.g., x) to denote
matrices and vectors, respectively. We use non-bold letters (e.g., x) to represent
scalars and Greek letters (e.g., λ) as parameters.

9

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

Chapter 2

Literature Review and Preliminaries

In this chapter, we review the literature relevant to our topic in three sections. In
the first section, we outline the general pipeline and main modules of Graph Neural
Networks, and further discuss the most important parts: computational modules
and learning methods. In the second section, we address the work related to graph
convolutional networks, which is divided into two main types: spatial-based and
spectral-based methods. In the third section, we summarize the work on graph
contrastive learning, especially the different types of data augmentation schemes.
We also give a data augmentation framework and categorize the different data
augmentation schemes into this framework.

2.1 Graph Neural Networks
Due to the heterogeneity and complexity of graph-structured data, the analysis

and processing of graph-structured data has proven to be a difficult but necessary
task [88, 193]. In recent years, Graph Neural Networks (GNNs) have emerged to
directly learn graph-structured data. GNNs convert graph-structured data into
feature representations and achieve outstanding performance on tasks such as node
classification, link prediction, and graph clustering [188]. This shows that GNNs can
learn the intrinsic patterns and deeper semantic features of graph-structured data.
We introduce the general pipeline for designing GNNs in this section and detail it
for the modules that will be covered in this thesis.

10

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

2.1.1 General Pipeline

GNNs have diverse functions and widely varying structures. We summarize the
general pipeline of GNNs from the designer’s perspective [193]. The illustration is
shown in Figure 2.1.

Sampling Convolution Pooling

Supervised
Semi-supervised
Self-supervised

…

Computational ModulesGraph Types Learning Methods

Node-level

Edge-level

Grape-level

Learning Tasks

Chapter 3:
Second-order

Graph Convolution

Chapter 4:
PageRank-based

Graph Convolution

Chapter 5:
Contrastive

Graph Learning
Directed Graph

Optional Compulsory Optional

Figure 2.1: General pipeline for a GNN model and the connection with our methods.

When designing a GNN, the first step is to determine the type of learning
task, whether it is node-level, edge-level, or graph-level. After that, we determine
the graph type that accommodates the application scenarios and the structure
of the actual data. Then, we design the computational module based on the
determined graph type. The computational modules determine how the GNNs learn
information from the graph structure and also how good the output features are. The
last thing that needs to be designed is learning method. For different practical
task scenarios, we need to specify the training mode, whether it is supervised,
unsupervised, or self-supervised. Notice that the actual design of GNNs is more
intricate, with inter-layer operations, joint learning with external knowledge, hybrid
models, etc. Here, only general design concepts are discussed.

Our work focuses on optimizing the graph neural network so that it can adapt to
a broader range of graph structures and training patterns. The modules improved
by our proposed methods are listed in Figure 2.1. The input data of our methods
is directed graph. The method DGCN proposed in Chapter 3 and the method
DiGCN proposed in Chapter 4 mainly improve computational modules, while the
method DiGCL proposed in Chapter 5 focuses on optimizing learning methods.

11

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

2.1.2 Learning Tasks

We usually abstract complex graph problems in the real world into generalized
graph tasks. For graph learning tasks, there are typically three types:

• Node-level tasks concentrate on nodes and include classification [88, 187],
regression [9], and clustering [163] of nodes. Node regression predicts a
continuous value for each node, while node classification attempts to classify
nodes into multiple classes. The objective of node clustering is to divide the
nodes into several distinct groups, with similar nodes grouped together.

• Edge-level tasks are edge classification [85] and link prediction [213, 216].
These tasks require the model to categorize edge types and predict whether
an edge exists between two nodes.

• Graph-level tasks including graph classification [35], regression [119], and
matching [102, 39], require the model to learn graph representation from local
and global features.

2.1.3 Graph Types

Complex graph types could provide additional information about nodes and their
connections. Graphs are typically classified as [193]:

• Directed/Undirected Graphs. Directed graphs contain edges that are all
directed from one node to another, providing more information than undirected
graphs. An undirected graph can be viewed as a special directed graph [160].

• Homogeneous/Heterogeneous Graphs. In homogeneous graphs, nodes
and edges are of the same type, whereas in heterogeneous graphs, they are of
different types. Node/edge types play important roles in heterogeneous graphs
and careful consideration is needed when performing modeling [211].

• Static/Dynamic Graphs. When input characteristics or the topology of
the graph change over time, the graph is considered dynamic. Time-series
information is an essential and important part of the dynamic graph [178].
This type of graph is commonly found in traffic networks.

12

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

Note that these categories are orthogonal, which means these types can be
combined; for example, a dynamic undirected heterogeneous graph is possible. Other
graph types, such as hypergraphs and signed graphs, are designed for specific tasks
[193]. In this thesis, we mainly consider the extension of GNNs in directed graphs.

2.1.4 Computational Modules

In this section, we introduce the core part of GNNs, the computational modules,
and divide them into three categories according to their functions: convolution,
sampling, and pooling operation.

Convolution Operation. The convolution operation is used to propagate infor-
mation between nodes and their neighbors so that the aggregated information could
capture both feature and topological information. It is the most important part in
GNNs and directly determines how the model learns the features from the graph. It
is also the component that numerous methods [28, 88, 165, 187] attempt to enhance.
We provide a comprehensive summary of graph convolution, the most closely related
topic of our work in Section 2.2.

Sampling Operation. Normally, GNNs aggregate messages from neighboring
nodes in each layer for every node. The size of supporting neighbors will increase
exponentially with model depth if multiple GNN layers are stacked. Sampling
is an efficient and effective method for addressing this neighbor explosion issue.
Meanwhile, when dealing with large graphs, it is impossible to store and process all
neighborhood information for each node, the sampling operation is required to carry
out the feature propagation [223]. Three are three types of graph sampling methods:
node sampling [54, 15, 206], layer sampling [16, 75], and subgraph sampling [22,
209]. These different levels of sampling methods can be used individually or in
combination to get the best results.

Pooling Operation. For the graph-level task, GNNs need to aggregate the global
information of the graph (including all nodes and all edges), and get a vector that can
represent the whole graph by aggregating the global information, and subsequently
perform classification and regression operations on the vector. Therefore, the graph
pooling is designed to extract high-level subgraph or graph representations. There

13

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

are currently several works designing hierarchical pooling layers on graphs through
self-attention [94], top-k sampling [41] and eigendecomposition [112].

2.1.5 Learning Methods

Depending on the usage and data characteristics, there are various learning
methods such as supervised, unsupervised, semi-supervised, weakly-supervised and
self-supervised learning. Here, we focus on semi-supervised and self-supervised
learning, which is closely related to our work.

2.1.5.1 Semi-supervised Learning

In many practical applications of ML, it is easy to find a large number of
unclassified labeled samples, but it requires special equipment or an expensive and
time-consuming experimental procedure to manually label the samples with class
labels [226], resulting in a very small number of samples with class labels and a
surplus of unlabeled samples. Therefore, an attempt is made to add a large number
of unlabeled samples to a limited number of labeled samples for learning, with
the expectation of improving learning performance, resulting in semi-supervised
learning [225]. It is intermediate between supervised learning (all labeled data)
and unsupervised learning (no labeled data) and solves the problems of model
generalization of supervised learning and model inaccuracy of unsupervised learning.

Semi-supervised learning on graph data is beneficial because models using graph
data can not only use a small number of given node labels, but can also make full use
of structural information to infer unlabeled node types. Semi-supervised learning is
used in numerous graph tasks. For example, node classification task aims to predict
non-existing node properties (known as the target propert) based on other node
properties [88, 187, 90], link prediction task focuses on estimating the probability of
links between nodes in a graph [65, 43], and graph classification task seeks to predict
target graph labels in a collection of graphs each with an attached categorical label
[98, 149, 231]. These simplified but generalized graph learning tasks become the
baseline tasks to measure the capability of graph neural networks [33, 70]. In our
experiments, we mainly use semi-supervised node classification and link prediction
tasks as standard tasks for evaluating models.

14

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

2.1.5.2 Self-supervised Learning

Self-supervised learning is a popular area of research that aims to improve the
feature extraction ability of models by designing auxiliary tasks (proxy tasks) for
unlabeled data to exploit the representational properties of the data itself [77].
During the learning process, the supervision information is obtained from the data
itself automatically without the need for manual annotation [109]. Self-supervised
learning enables the model to learn more informative representations from unlabeled
data and achieve better performance [165, 57], generalization [72, 136, 71], and
robustness [207, 83] on a variety of downstream tasks.

We can group graph self-supervised learning into three main categories: generation-
based, auxiliary property-based and contrast-based methods [109]. This categoriza-
tion is based on the network structure and the design of the auxiliary tasks. The
following is a discussion of the various types of graph self-supervised learning work.

Generation-based Methods. Generation-based methods are generally de-
signed to reconstruct the original data and use the original data as their supervision
information. This category can be linked back to Autoencoder [64], which learns to
compress data vectors into low-dimensional representations using an encoder network
and then attempts to reconstruct the input vectors using a decoder network. Similar
to autoencoders, generation-based graph self-supervised methods usually take the full
graph or subgraph as input and learn the graph structure and representation through
the process of reconstructing the graph structure. As one of the representative
works, VGAE [87] employs an inference model-based encoder to estimate the mean
and deviation with two parallel output layers. The Kullback-Leibler divergence is
calculated between the prior distribution and the estimated distribution to measure
reconstruction loss. To learn additional generative representations for graph data,
SIG-VAE [56] takes hierarchical variational inference into account, similar to VGAE.
An alternative to reconstructing the entire graph is to recover the masked edges.
Denoising Link Reconstruction [73] eliminates existing edges at random and then
attempts to recover the discarded links using a decoder based on pairwise similarity.

Auxiliary Property-based Methods. Auxiliary property-based methods obtain
node-, link- and graph- level supervision information from original graphs to guide
the training process of the model. These methods have a similar training paradigm

15

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

to supervised learning because they both employ supervision information for learning
[109]. Their distinction lies in the method of labeling: In supervised learning, the
manual label is human-annotated, which frequently incurs high costs; however, in
auxiliary property-based methods, the pseudo label is generated automatically and
at little cost. There are primarily two subcategories of auxiliary property-based
methods: (1) auxiliary property classification, which uses classification-based proxy
tasks to train the encoder [151, 230, 132], and (2) auxiliary property regression,
which performs self-supervised learning using regression-based proxy tasks [82, 81].

Contrast-based Methods. Contrast-based methods are based on the idea of
mutual information (MI) maximization [66], which acquires knowledge by foreseeing
concordance between two augmented instances. Several Graph Contrastive Learning
(GCL) [207, 229, 136, 57] works are proposed based on Graph Neural Networks
(GNNs) [88, 54, 90] and Contrastive Learning (CL) [19, 162, 58]. As revitalization
of the CL used in the visual representation learning [58, 19], GCL forces views
generated from the same instance closer while views from different instances apart.
As the closely related area, we summarize the contrast-based work in Section 2.3.

The properties of self-supervised methods for graphs vary. Generation-based
methods are simple to implement because the reconstruction task is straightforward
to construct, but recovering large-scale graphs can be memory intensive. While the
design of decoders and loss functions can be kept simple with auxiliary property-
based methods, selecting useful auxiliary properties often requires expertise in the
relevant domain. Contrast-based methods have more flexible designs and border
applications than other categories [109]. Thus, we focus on contrast-based graph
self-supervised learning methods (graph contrastive learning) in this thesis.

2.2 Graph Convolutional Networks
Graph Convolutional Networks (GCNs) are promising tools to effectively learn

from graph-structured data [88, 54, 165]. They follow an iterative neighborhood
aggregation (or message passing) scheme to obtain structural knowledge in the
neighborhood nodes [20]. Formally, given a graph G = (V , E), its adjacency matrix
can be denoted as A = {0, 1}n×n, where n = |V|. The nodes are described by the

16

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

feature matrix X ∈ Rn×c, with the feature dimension c per node. Considering a
K-layer GCN f(·), the propagation of the kth layer is represented as

h
(k)
i = COMB(k)

(
h

(k−1)
i ,AGG(k)

({
h

(k−1)
i′ : i′ ∈ N (i)

}))
, (2.1)

where N (i) is the neighborhood set of node i and h
(k)
i is its feature at the kth layer

with h
(0)
i = xi. AGG(·) controls how features are aggregated from neighbor. Note

that the neighborhood set is customizable and is not limited to direct adjacency
(existence of directed edges), e.g., in Chapter 3, we have second-order proximity/-
connection, and in APPNP [90] any node can be connected. Besides, COMB(·)
determines how the front and current-layer features are combined. After the K-layer
propagation, we can summarize output embedding of G through the READOUT
function

f(G) = READOUT
({

h
(k)
i : vi ∈ V, k ∈ K

})
. (2.2)

Above we present a general framework of GCNs. Next, we introduce a few
most representative instantiations or variants of GCNs. We can divide GCNs into
two categories: spatial-based [54, 165] and spectral-based [88, 101, 28] methods.
Spatial-based GCNs operate directly on the nodes and edges of a graph and use a
convolution operation to aggregate information. Spectral-based GCNs operate on
the graph’s Laplacian matrix and use a spectral filtering operation to transform the
graph signal before using a spatial convolution operation to aggregate information.

2.2.1 Spatial-based Methods

In spatial-based methods, the topology of the graph is used to define the convolu-
tions directly on the graph. The most difficult aspect of spatial approaches is defining
the convolution operation with neighborhoods of varying sizes and preserving the
local invariance. In other words, the spatial-based methods mainly require the design
of AGG, including neighborhood set N (i), and COMB functions to make them
efficient to aggregate the features of neighbor nodes and propagate to other nodes.

GraphSAGE [54] proposes a general inductive framework that can generate node
embeddings for unknown data in an efficient manner. It includes two components:
sampling and aggregation. GraphSAGE initially samples the neighbors based on
the connection information between nodes, and then continuously aggregates the

17

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

information of neighbor nodes using a multi-layer aggregation function, which is
utilized to predict node labels.

(a) (b)

Figure 2.2: Illustration of GraphSAGE components [54]: (a) neighborhood sampling
and (b) information aggregation.

As shown in Figure 2.2(a), the k parameter controls the size of the neighborhood
used. A value of 1 only considers adjacent nodes as similar, while a value of 2 also
includes nodes at a distance of 2. However, increasing k to 2 also allows nodes at a
distance of 4 to influence each other’s embeddings through a shared intermediary
node, potentially introducing unwanted information sharing.

Once the neighborhood has been determined, a method for sharing information
among the neighboring nodes needs to be established. Aggregation functions, also
known as aggregators, take in the neighborhood as input and combine the embeddings
of each neighbor using weights to create a neighborhood embedding. These functions
are used to aggregate information from the node’s neighborhood. An illustration
of this process is shown in Figure 2.2(b). The weights used by the aggregator can
be either learned or fixed, depending on the specific function being used. It offers
four functions for aggregating nodes: mean, GCN, LSTM, and pooling, reflecting
the diversity of spatial-based methods in the selection of aggregation functions.
GraphSAGE with a mean aggregator is an inductive variant of GCN.

Several models [165, 212] have been proposed to generalize the attention operator
to graphs. Attention-based operators assign different weights for neighbors, so that
they could alleviate noises and achieve better results compared to the direct method
of aggregation using original weights. The attention mechanism is embedded within
the network’s propagation stage in a Graph Attention Network (GAT) [165]. Each

18

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

node’s hidden states are calculated using a self-attention strategy in which the node
pays attention to its neighbors.

In addition to GAT, Gated Attention Network (GaAN) [212] also uses a multi-
headed attention mechanism. GaAN’s attention aggregator uses key-valued attention
and dot-product attention, whereas GAT’s attention aggregator calculates attention
coefficients using fully connected layers. Moreover, GaAN assigns different weights
to different attention heads. This aggregator is called the gated attention aggregator.

The spatial-based methods circumvent graph theory and obviate the need to
transform the graph signal from the spatial domain to the spectral domain. These
methods define convolution operations directly on the spatial domain, which is more
intuitive than spectral graph convolution but lacks theoretical support. Next, we
present spectral-based methods.

2.2.2 Spectral-based Methods

Spectral-based GCNs utilize a spectral representation of the graphs in their
work. These methods define the convolution operator in the spectral domain and
have theoretical background in graph signal processing [147]. In spectral methods,
a graph signal is first converted to the spectral domain using the graph Fourier
transform, followed by the convolution operation. After convolution, the obtained
signal is transformed back using the inverse graph Fourier transform [193]. We break
down spectral-based graph convolution into two categories based on the type of
graph, specifically undirected and directed graph convolution.

2.2.2.1 Undirected Graph Convolution

We begin with graph convolutional networks (GCN) [88], the most widely used
type of graph neural network due to its versatility [103, 177]. GCN has multi-layers
that stacks first-order Chebyshev polynomials as a graph convolution layer and
learns graph representations using a nonlinear activation function. Using Chebyshev
polynomials to replace the time-consuming Laplacian eigenvalue decomposition of
graph spectral convolution is proposed by ChebNet [28]. Unlike GCN, the polynomial
of ChebNet can be Kth order, while GCN does a simplification and uses only the
first order. Please refer to Section 3.2.2 for the detailed definition of graph spectral
analysis and the derivation from ChebNet to GCN.

19

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

GCN [88] can be grouped into the general framework in the previous section.
The AGG function in GCN is defined as the weighted average of the neighbor node
representations. The COMB function is defined as the summation of the aggregated
messages and the node representation itself, in which the node representation is
normalized by its own degree [188]. However, since spectral convolution requires
a semi-positive definite Laplacian operator, this limits spectral convolution to
undirected graphs.

There are also numerous variants of GCN, which are manifested in simplifying
the convolution process [187], using different network structures [140], adding
different convolution scales [1], etc. SGC [187] removes nonlinear layers by using
2-hop adjacency matrix as replacement and collapses weight matrices to reduce
computational consumption. SIGN [140] proposes an inception-like structure which
uses SGC as basic block and concatenates these block of different size together into
a FC layer. N-GCN [1] inspires from random walk, it builds a multi-scale GCN
which uses different powers of adjacency matrices as input to achieve extract feature
from different K-hop neighborhoods. It can gain the information from the kth step
from current node, which the same idea with K-hop. However, its K-hop method is
only applicable to undirected graphs.

Klicpera et al. [90] proposes APPNP model which utilize a propagation based
on personalized PageRank to handle feature oversmoothing problem. Besides,
the PPRGo [11] increases the efficiency of APPNP by incorporating multi-hop
neighborhood information in a single step. Note that no matter APPNP or PPRGo,
the basic form of their propagation matrices is Appnp = α (I− (1− α)Au)−1, α is
the teleport probability of personalized PageRank, which is quite different from our
directed graph Laplacian in Equation 5.1. Furthermore, they use symmetric matrix
Au in the propagation, which means they are not adaptive to directed graphs.

2.2.2.2 Directed Graph Convolution

The majority of research on directed network analysis has been spectral in
nature and centered on symmetrization-based techniques [112, 126, 142], but edge
directionality itself can contain vital information [160, 216]. Hermitian clustering
[26] and motif-based methods [164] have been used to discover imbalanced flows
in directed graphs. There has been a recent uptick in the use of GCNs to extract

20

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

structure information from directed edges [61].
Several GCN works have tried to learn the complex directed graph structure

by defining motifs [118], using magnetic Laplacian [216], inheritance relationships
[84], redefining the propagation scheme from Markov process view [113] and flow
imbalance measures [60]. Ma et al. [113] use the directed Laplacian operator to
solve the directed graph problem. However, it is defined on strongly connected
directed graphs, which is not universally applicable to any directed graphs. DIGRAC
[60] uses imbalance objectives and evaluation metrics to perform directed graph
clustering based on flow imbalance measures.

MagNet [216] utilizes a complex Hermitian matrix called the magnetic Laplacian.
This matrix encodes both undirected geometric structure in the magnitude of
its entries and directional information in the phase. This paper constructs the
adjacency matrix of a directed graph in the form of complex numbers to preserve
the directionality of the graph. Compared to real-valued Laplacian matrices, this
approach is better able to represent the directed nature of the graph. However,
experimental results show that the performance of node classification is not as good
as link prediction and that the best results for certain node classification experiments
are obtained when the imaginary part of the complex number is zero, i.e. when only
the real part is retained, treating the directed graph as an undirected graph.

It is worth mentioning that our proposed methods DGCN [161] in Chapter 3
and DiGCN [160] in Chapter 4 are the first few works to explore directed graph
convolution, and are also the baselines for the aforementioned MagNet and DIGRAC.

2.3 Graph Contrastive Learning
Given the success of GCNs in extracting features from graph-structured data, it

is natural to explore ways to improve the representations learned by these networks.
One promising approach is to utilize Graph Contrastive Learning (GCL), which
aims to learn robust representations by contrasting different views of the same graph.
Using GCNs as the underlying model in the contrastive learning process allows for
representations that are specifically tailored to the structure of the graph, resulting
in improved performance on tasks related to graphs. In the following, we will delve
deeper into the details of graph contrastive learning and explore how it can be

21

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

integrated with GCNs to enhance the learned representations.
GCL is an extension of popular Contrastive Learning (CL) methods [19, 162, 58]

on the graph. Several studies [57, 207, 228, 229] have shown the potential of GCL
in learning generalized representation on graph-structured data. They force views
generated from the same instance closer while views from different instances apart
using InfoNCE-like [123] objective function.

We list a few of representative GCL works as follows. DGI [166] employs two
discriminators to directly measure mutual information (MI) between input and
representations of both nodes and edges without data augmentation. GMI [133]
generalizes the concept of MI computations from vector space to graph domain
where the calculation of MI from two aspects of node features and topological
structure is indispensable. MVGRL [57] proposes to learn both node and graph-
level representations by performing graph diffusion augmentation and contrasting
augmented graph representations. GraphCL [207] proposes a GCL framework
combinations of several graph augmentations to incorporate various priors and study
the impact of various graph augmentations on multiple datasets. This method is
primarily used for contrastive learning at the graph-level. GRACE [228] presents
a GCL method with adaptive augmentation that incorporates various priors for
topological and semantic aspects of the graph, which mainly focuses on the node-level
contrastive learning.

Previous works [157, 57, 203] have found the powerful capabilities of using
multiple contrastive views at the same time in contrastive learning. However, their
methods require to set contrastive views in advance, which means the views are fixed
during training [57, 157]. Unlike them, we do not preset the parameters to fix the
contrastive views but let them dynamically change during training. We compared
the existing GCL methods as shown in Table 2.1.

For design graph contrastive learning models, one of the crucial steps is to generate
good contrasting views through data augmentation. Thus, we summarize a framework
for data augmentation that systematically subdivides different data augmentation
methods into three levels, enabling us to pick the right data augmentation method
for different problems as needed.

22

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

Table 2.1: Comparison of different GCL methods.

Method Graph Type Data Augmentation Views
MVGRL [57] Undirected Graph diffusion Fixed

GCC [136] Undirected Graph sampling
with restart Fixed

GraphCL [207] Undirected

Node dropping
Edge perturbation
Sample subgraph
Attribute masking

Fixed

GRACE [228] Undirected Removing edge
Feature masking Fixed

Ours (DiGCL) Directed Laplacian perturbation Easy to difficult

2.3.1 Data Augmentation Framework

We can summarize the graph data augmentation as:

Ĝ = TΘ(G) = TΘ(A,X), (2.3)

which aims to find a set TΘ that takes the graph structure A and node feature X
into consideration and output the augmented graph Ĝ. There may be several kinds
of augmentation functions in the set T . If we wish to classify the numerous data
augmentations, we need to consider not only their perturbations to the original
graph, but also the impact they will have on the GCN-based encoder. Thus, we
divide them into three categories according to the impact of data augmentations on
the encoder’s perturbed parts. The general formula of GCNs has been described in
Equation 2.1 and Equation 2.2, and the illustration of graph data augmentation is
shown in Figure 2.3

2.3.1.1 Topology-level Augmentation

The common point of generating contrasting views from the topology level is to
obtain a different structure of the graph by perturbing A while keeping the original
semantic information. We can further break it down into two categories:

Local Aggregation. Several data augmentations can be treated as perturbing the
aggregation scheme AGG(·) among their neighbors N (i). This aspect focuses on
adjusting the weights for the node and its neighbors and assumes that the semantic

23

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

Figure 2.3: Illustration of Graph Data Augmentation.

meaning of G has certain robustness to the local aggregation changes. We can write
the perturbed graph as

Ĝla = (νI + ξW(A),X), (2.4)

where ν, ξ are the aggregation weights andW is the adjacency perturbation function.

Neighbour Range. Another form of topological augmentation is perturbing the
range of neighbours N (i). Since first-order neighbours often contain rich local
information, after expanding the range of neighbours, we are able to get farther
global information [160, 187]. This motivates many methods, i.e., neighbour hop
[132], to make first and higher-orders as contrasting views, that is, the local and
global contexts. It implies that changing range of neighbour does not affect the
semantic meaning of G. Formally. this type of augmentation can be written as:

Ĝnr = (νI +
∑k̂

j=1ξjA
j,X) = (K(A),X), (2.5)

where K(·) is a polynomial function and k̂ is the order of neighbours. By combining
the above two augmentations, We can obtain a generalized formula for the Topology-
level augmentation as

Ĝtopo = (K(W(A)),X). (2.6)

2.3.1.2 Propagation-level Augmentation

Most current data augmentations ignore the reverse direction of feature propa-
gation, which means that features can be propagated back to itself or re-initiated

24

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

propagating with a certain likelihood [90]. The underlying prior is the perturbation
propagation does not affect the expressiveness of the model much. We can think
of Propagation-level augmentation as the original Laplacians multiplied by the
perturbed inverse Laplacians. Formally, we can define this kind of augmentation as

Ĝprop = (K(A)/Q(A),X) , (2.7)

where Q(·) is a polynomial function, and the bias of Q is 1 to keep the original
propagation when there is no perturbation. This type of augmentation is not
common used in GCL due to the high computational cost of matrix inverse.

2.3.1.3 Feature-level Augmentation

Feature-level augmentation prompts models to recover missing or interrupted
vertex features using their context information, i.e., the remaining features. We
can define this augmentation as adding noise to the node feature via randomly
perturbing a part of feature matrix X. Formally, we write the perturbed graph as:

Ĝfeat = (A,M(X)), (2.8)

where M(·) is a feature perturbation function, e.g., masking features or adding
Gaussian noise [57].

2.3.2 Graph Data Augmentation

Good data augmentations are the prerequisite for contrastive learning [207, 167,
181]. Most current data augmentation methods, such as dropping nodes or edges
[207, 228, 229, 179] and attribute masking [71, 207, 182] are migrated from visual
representation methods [189, 220] with graph structural improvements. Other meth-
ods learn graph structure features by combining with traditional graph algorithms
to go self-supervised, for example, subgraph sampling [207, 136, 180], graph diffusion
based on PageRank/Heat kernel [57], and multi-hop neighbor prediction [132]. We
divide graph data augmentation into two subsections based on the type of graph,
discussing undirected and directed graph data augmentation, respectively.

25

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

2.3.2.1 Undirected Graph Data Augmentation

We category the existing data augmentations for undirected graph in Table 2.2,
and give a detailed explanation of the categorization.

Table 2.2: Summary of existing data augmentations. "LA" means Local Aggregation
and "NR" stands for Neighbour Range. The sampling-based approaches subgraph
sampling and node dropping would lead to the loss of nodes, affecting both the
adjacency matrix A and the feature matrix X.

Method Category Perturbed Part
Edge perturbation Topology (LA) AGG(·)
Neighbour hop Topology (NR) N (i)
Graph diffusion Propagation COMB(·)
Feature masking Feature X
Subgraph sampling Topology & Feature A & X
Node dropping Topology & Feature A & X

Edge Perturbation. Perturbation of edges is a common and efficient way to
augment graph. For computational consumption reasons, we generally remove
existing edges randomly on top of the original graph instead of adding edges
randomly. For removing edges [207, 228], we first sampling a random edge masking
matrix N = {0, 1}n×n, whose entry is drawn from a Bernoulli distribution B(1− pe),
i.e., N ∼ B(1 − pe). pe is the edge perturbation probability. We can obtain the
perturbed adjacency matrix Â as

Wedge(A) = Â = A⊕N, (2.9)

where ⊕ is the exclusive OR (XOR) operation. We obtain the augmented graph as:

Ĝedge = (Wedge(A),X). (2.10)

This kind of data augmentation belongs to Local Aggregation of Topology-level
when we take ν = 0 and ξ = 1.

Neighbour Hop. Designing this form of data augmentation scheme is relatively
straightforward and only requires consideration of the neighbors at different orders.
Formally, the kth-order perturbed graph Ĝnh as:

Ĝnh = (0 · I + 0 ·A + . . .+ 1 ·Ak,X). (2.11)

26

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

When using this method, we just need to select the different k for comparison. This
approach is part of Neighbour Range in Topology-level category.

Graph Diffusion. A representative method in the Propagation-level category
is graph diffusion from MVGRL [57], which uses Personalized PageRank kernel
[90] with teleport probability α as data augmentation. We can rewrite this graph
diffusion using our framework as:

Ĝgd = (α

I− (1− α)Ã
,X), (2.12)

where Ã is the normalized adjacency matrix A.

Feature Masking. The underlying assumption of Feature-level augmentation
is that perturbing partial node attributes does not affect the model predictions
much. For feature masking [228, 207], it can be done by sampling. Assuming a
Bernoulli distribution B(1− pf), where pf denotes the probability of each feature
being modified, we draw a random matrix M = {0, 1}n×b from B(1 − pf), i.e.,
M ∼ B(1 − pf), and b is the feature dimension. We then acquire the perturbed
feature matrix as

Mmask(X) = X̂ = X⊕M. (2.13)

We can obtain the augmented graph as:

Ĝfm = (A,Mmask(X)) (2.14)

Graph Sampling. There are several variants of graph sampling based methods,
such as subgraph sampling, node dropping (full graph sampling), etc. These methods
assume that the graph structure will have some redundant information and enable
the network to learn the intrinsic structural information by comparing the augmented
graph with different sampling rates.

Similar to graph pooling, both subgraph and node sampling methods result in
losing some nodes. This means that they not only affect the adjacency matrix A,
but also change the feature matrix X. We think of such methods as composites of
two categories: Topology-level and Feature-level.

The graph sampling approaches are more commonly used for graph-level con-
trastive learning [207, 57], such as small chemical molecules. Since such methods

27

CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES

inevitably lose part of the nodes, this leads to their inapplicability to node-level
graph contrastive learning.

2.3.2.2 Directed Graph Data Augmentation

However, most of these data augmentation methods for undirected graph are
not optimized for directed graphs, and thus they cannot efficiently obtain structure
information that can be used for self-supervised learning. The performance of the
existing methods on the directed graphs can be seen in Table 5.8. To the best of our
knowledge, there is no data augmentation scheme specifically designed for directed
graphs. The Laplacian perturbation proposed in our work DiGCL [159] is the first
data augmentation scheme currently designed specifically for directed graphs.

2.4 Summary
In this chapter, we present an extensive review of Graph Neural Networks. We

start from the general design pipeline of GNNs and summarize the work involved
in the different modules. We also summarize the advantages and disadvantages
of various techniques and discuss the shortcomings for existing work on directed
graphs. Moreover, we closely analyze the work in the areas of Graph Convolutional
Networks and Graph Contrastive Learning, two areas closely related to the later
chapters, and give some preliminaries. Motivated by the related background and
shortcomings of related methods, we will present a more detailed description of how
we (propose to) solve these problems in the subsequent chapters.

28

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Chapter 3

Second-order Graph Convolution

In this chapter, we present DGCN, a novel graph convolutional network for
directed graphs. DGCN uses first- and second-order proximity to generalize spectral-
based GCNs to directed graphs, It can retain directed features of graphs and expand
the convolution receptive field to extract and leverage surrounding information. Our
approach outperforms other models in semi-supervised classification tasks through
experimental validation on various real-world datasets.

3.1 Introduction
Graph structure is a common form of data in real-world problems. It has a

very strong ability to represent complex structures and can easily express entities
and their relationships. Graph Convolutional Networks (GCNs) [55, 28, 88, 54,
165, 200] are CNNs variants on graphs and effectively learn underlying pairwise
relations among data nodes. Different GCN variants greatly promote their use in
various real-world tasks, including but not limited to social networks [18], quantum
chemistry [103], text classification [204] and image recognition [177].

One of the main reasons that a GCN can achieve such good results on a graph
is that it makes full use of the structure of the graph. It captures rich information
from the neighborhood of object nodes through the links instead of being limited to
a specific distance range. General GCN models provide a neighborhood aggregation
scheme for each node to gain a representation vector, and then learn a mapping
function to predict the node attributes [69]. Since spatial-based methods need to
traverse surrounding nodes when aggregating features, they usually add significant
overhead to computation and memory usage [187]. On the contrary, spectral-based

29

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

methods use matrix multiplication instead of traversal search, which greatly improves
the training speed. Thus, we focus mainly on the spectral-based method here.

Although the above methods have achieved improvement in many aspects, there
are two major shortcomings with existing spectral-based GCN methods.

First, spectral-based GCNs are limited to apply to undirected graphs [193]. For
directed graphs, the only way is to relax the graph structure from a directed to an
undirected graph by symmetrizing the adjacency matrix. In this way we can get
the semi-definite Laplacian matrix, but at the same time we also lose the unique
structure of the directed graph. For example, in a citation graph, later published
articles can cite former published articles, but the reverse is not true. This is a
unique time series relationship. If we transform it into an undirected graph, we lose
this part of the information. Although we can represent the original directed graph
in another form, such a temporal graph learned by combination of Recurrent Neural
Networks (RNNs) and GCNs [129], we still want to dig more structural features
from the original without adding extra components.

Second, in most existing spectral-based GCN models, during each convolution
operation, only 1-hop node features are taken into account (using the same adjacency
matrix), which means they only capture the first-order information between nodes.
It is natural to consider direct links when extracting local features, but this is not
always the case. In some real-world graph data, many legitimate relationships may
not be encoded via first-order links [156]. For instance, people in social networking
communities share common interests, but they do not necessarily contact each
other. In other words, the features we get by first-order proximity are likely to be
insufficient. Although we can obtain more information by stacking multiple layers
of GCNs, multi-layer networks will introduce more trainable parameters, making
them prone to overfitting when the label rate is small or needing extra labeled
information, which is not label efficient [100]. Therefore, we need a more efficient
feature extraction method.

To address these issues, we leverage second-order proximity between nodes
as a complement to existing methods, which inspire from the hub and authority
web model [89, 221]. By using second-order proximity, the directional features of
the directed graph can be retained. Additionally, the receptive field of the graph
convolution can be expanded to extract more features. Different from first-order

30

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

3

7

8

4

2
6

5

9

1

Figure 3.1: A simple directed graph example. Line width indicates the weight of
the edges. The node v1 has first-order proximity with v3. It also has second-order
proximity with v2, because they have shared neighbors {v4, v5, v6}. Both v2 and v3’s
features should be considered when aggregating v1’s feature.

proximity, judging whether two nodes have second-order proximity does not require
nodes to have paths between them, as long as they share common neighbors, which
can be considered as second-order proximity. In other words, nodes with more
shared neighbors have stronger second-order proximity in the graph. This general
notion also appears in sociology [48], psychology [138] and daily life: people who
have a lot of common friends are more likely to be friends. A simple example is
shown in Figure 3.1. When considering the neighborhood feature aggregation of v1

in the layer1, we need to consider v3, because it has a first-order connection with v1,
but we also need to aggregate v2’s features, due to the high second-order similarity
with v1 in sharing three common neighbors.

In this chapter, we present a new spectral-based model on directed graphs,
Directed Graph Convolutional Networks (DGCN), which utilizes first & second-
order proximity to extract graph information. We not only consider basic first-order
proximity to obtain neighborhood information, but also take second-order proximity
into account, which is a complement for the sparsity of first-order information in
real-world data. What’s more, we verify this efficiency by extending Feature and
Label Smoothness measurements [69] to our application scope. Through experiments,
we empirically show that our model exhibits superior performance against baselines
while the number of parameters and computational consumption is significantly
reduced.

In summary, our study has the following contributions:

31

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

1. We present a novel graph convolutional network called DGCN, which can be
applied to the directed graphs by utilizing first- and second-order proximity. To
our knowledge, this is the first-ever attempt that enables spectral-based GCNs to
generalize to directed graphs.

2. We define first- and second-order proximities on the directed graph, which are
designed for expanding the convolution operation receptive field, extracting
and leveraging graph information. Meanwhile, we empirically show that this
method has both feature and label efficiency, while also demonstrating powerful
generalization capability.

3. We experiment with semi-supervised classification tasks on various real-world
datasets, which validates the effectiveness of first- and second-order proximity
and the improvements obtained by DGCNs over other models.

3.2 Undirected Graph Convolution and its Limi-
tations

The spectral-based graph convolution is based on spectral graph theory [68], which
examines the characteristics of graphs by analyzing the eigenvalues and eigenvectors
of related matrices such as the adjacency matrix and the graph Laplacian and its
variations. In this section, we first go through the currently used spectral-based
graph convolution defined on the undirected graphs and then study the limitations
of its application to directed graphs.

3.2.1 Undirected Graph Laplacian

Formally, we define the underlying data structure, graph, as follows:

Definition 1. Graph [135]. A general graph has n vertices or nodes is define as
G = (V , E), where V is node set and E is edge set. Each edge (u, v) ∈ E is an
ordered pair between node u and v. The nodes are described by the feature matrix
X ∈ Rn×c, with the number of features c per node. A graph is directed when has
any (u, v) 6≡ (v, u). The adjacency matrix of the directed graph can be denoted as

32

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

A = {0, 1}n, where

A(u, v) :=

1 if (u, v) ∈ E
0 otherwise

. (3.1)

When each edge has edges in their opposite direction (u, v) ≡ (v, u), the graph is
undirected. We mark the undirected graph as Gu, and its adjacency matrix is defined
as Au, where

Au(u, v) :=

1 if (u, v) ∈ E or (v, u) ∈ E
0 otherwise

. (3.2)

At the center field of spectral graph theory as well as a number of important
machine learning algorithms, such as spectral clustering [168], lies a matrix called
the graph Laplacian. This matrix is also the key to spectral-based graph convolution.
The undirected graph Laplacian matrix is defined as follows:

Definition 2. Undirected Graph Laplacian Matrix. Given an undirected
graph Gu, the undirected graph Laplacian is defined as

Lu = Du −Au, (3.3)

where Du ∈ Zn×n is a diagonal matrix of node degree, where

Du(u, v) :=

degree (u) if u = v

0 otherwise
. (3.4)

Figure 3.2: Simple example of an undirected graph and its Laplacian matrix [185].

A simple example of an undirected graph and its Laplacian matrix is shown in
Figure 3.2. It should be noted that this Laplacian matrix requires the use of a real
symmetric adjacency matrix, so directed graphs cannot be directly applied to this
definition. We will define the Laplacian matrix for directed graphs in subsequent
Chapter 4.

33

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

3.2.2 Undirected Graph Convolution

Lu is symmetric and positive semi-definite [49]. It can be normalized as L′u =
I − D−

1
2u AuD

− 1
2u = UΛUT , where I is an identity matrix, U is the matrix of

eigenvectors of L′u and Λ is the diagonal matrix of eigenvalues. The spectral
convolution on the undirected graph is defined as the multiplication of node scalar
x ∈ Rn with a filter gθ = Diag(θ) parameterized by θ ∈ Rn in the Fourier domain
[28]:

gθ ∗ x = U
(
UTgθ �UTx

)
= UgθUTx, (3.5)

where ∗ represents convolution operation and � is the element-wise Hadamard
product. Here we can understand gθ as a function of the eigenvalues Λ of L′u.

Graph convolutions can be further approximated by Kth Chebyshev polynomials
[28] to reduce computation-consuming:

gθ′ ∗ x ≈
K∑
k=0

θ′kTk(L̃
′
u)x, (3.6)

where L̃′u = 2L′u/λmax − I, λmax denotes the largest eigenvalue of L′u and Tk(x) =
2xTk−1(x) − Tk−2(x) with T0(x) = 1 and T1(x) = x. The K-polynomial filter gθ′
parameterized by θ′ ∈ RK shows its good localization in the node domain through
integrating the node features within the K-hop neighborhood[214]. Our model
obtains node features in a different way, which will be explained in Section 3.3.4.

Kipf et al. employ Graph Convolutional Networks (GCNs)[88], which is a first-
order approximation of ChebNet. They assume k = 1 and λmax ≈ 2. Besides, they
set θ as shared parameters over the whole graph, i.e., θ = θ′0 = −θ′1 in Equation 3.6
to simplify graph convolution and get the following GCN convolution gθ as:

gθ ∗ x ≈ θ
(
I + D−

1
2u AuD

− 1
2u

)
x. (3.7)

They also use renormalization trick converting I+D−
1
2u AuD

− 1
2u to D′

u
− 1

2 A′
uD

′
u
− 1

2 ,
where A′

u = Au +I and D′
u(u, v) = ∑

v∈V A′
u(u, v), to alleviate numerical instabilities

and exploding/vanishing gradients problems. The final graph convolution layer is
defined as follows:

Z′u =
(
D′

u
− 1

2 A′

uD
′

u
− 1

2
)

XΘ. (3.8)

34

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Here, X ∈ Rn×c is the c-dimensional node feature vector, Θ ∈ Rc×d is the filter
parameters matrix and Z′u ∈ Rn×d is the convolved result with d output dimension.

However, the derivations are based on the premise that the graph is undirected,
i.e., the Laplacian matrices are symmetric. The way they use to deal with directed
graph is to relax it into an undirected graph, thereby constructing a symmetric
Laplacian matrix.

3.2.3 Usage Limitations on Directed Graph

Although relaxing directed graph to undirected can be used for spectral convo-
lution, it is not able to represent the actual structure of the directed graph. For
instance, as we mention in the Section 3.1, there is a time limit for citations: previ-
ously published papers cannot cite later ones. If the citation network is relaxed to
an undirected graph, this restriction will no longer exist.

Since the graph Laplacian and von Neumann entropy are intrinsically linked
[205], we can use the proprieties of von Neumann entropy to analyze what the
difference would be when converting a directed graph to an undirected graph. We
start with defining the von Neumann entropy of directed graphs.

Definition 3. Approximate von Neumann entropy for directed graphs.
Given a directed graph G = (V , E), its approximate von Neumann entropy [205] is
defined as

HD
VN(G) = 1− 1

n
− 1

2n2

 ∑
(u,v)∈E

(
1

dout
u dout

v

+ din
u

din
v d

out2
u

)
−

∑
(u,v)∈Ẽ

1
dout
u dout

v

 , (3.9)

where Ẽ = {(u, v) | (u, v) ∈ E and (v, u) /∈ E}. din
u = ∑

v∈V A(v, u) and dout
u =∑

v∈V A(u, v) are the in- and out-degree of the node u.

To simplify the derivation process, we normalize the above von Neumann entropy.
The normalization is done in relation to the graph size, which removes part of the
size dependence. In particular, we compute the quantity

J D
VN(G) = |V|

∣∣∣∣∣HD
VN(G)−

(
1− 1
|V|

)∣∣∣∣∣
= 1

2n

 ∑
(u,v)∈E

(
1

dout
u dout

v

+ din
u

din
v d

out2
u

)
−

∑
(u,v)∈Ẽ

1
dout
u dout

v

(3.10)

35

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

as a normalized quantity which captures variations in the in-degree and out-degree
statistics. It has the same manner as the approximate von Neumann entropyHD

VN(G).
It is worth noting that the monotonicity features of the normalized quantity and
the original entropy are opposed.

We want to investigate whether the simple transformation of directed graphs
to undirected graphs has any effect on the loss of graph structure information.
We assume that node p, q ∈ V and (p, q) ∈ Ẽ , thus (p, q) ∈ E and (q, p) /∈ E .
We gradually transform the original directed graph into an undirected graph by
converting a directed edge (p, q) into an undirected edge, i.e., adding (q, p) into E .
Since both (p, q) and (q, p) are ∈ E , (p, q) /∈ Ẽ . We define the graph after adding the
edge (q, p) as G ′ = (V , E ∪{(q, p)}) and the normalized quantity can be calculated as

J D
VN(G ′) = 1

2n

 ∑
(u,v)∈E∪{(q,p)}

(
1

dout
u dout

v

+ din
u

din
v d

out2
u

)
−

∑
(u,v)∈Ẽ/{(p,q)}

1
dout
u dout

v

= 1

2n

 ∑
(u,v)∈E

(
1

dout
u dout

v

+ din
u

din
v d

out2
u

)
+

∑
(u,v)∈{(q,p)}

(
1

dout
u dout

v

+ din
u

din
v d

out2
u

)

−
∑

(u,v)∈Ẽ

1
dout
u dout

v

+
∑

(u,v)∈{(p,q)}

1
dout
u dout

v

 .
(3.11)

After adding an edge, we can calculate the change in the von Neumann entropy as

J D
VN(G)− J D

VN(G ′) = 1
2n

 ∑
(u,v)∈E

(
1

dout
u (G)dout

v (G) + din
u (G)

din
v (G)dout

u (G)2

)

−
∑

(u,v)∈E∪{(q,p)}

(
1

dout
u (G ′)dout

v (G ′) + din
u (G ′)

din
v (G ′)dout

u (G ′)2

)

−
∑

(u,v)∈Ẽ

1
dout
u (G)dout

v (G) +
∑

(u,v)∈Ẽ/{(p,q)}

1
dout
u (G ′)dout

v (G ′)

36

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

J D
VN(G)− J D

VN(G ′) = 1
2n

 ∑
(u,v)∈E

(
1

dout
u (G)dout

v (G) + din
u (G)

din
v (G)dout

u (G)2

)

−
∑

(u,v)∈E

(
1

dout
u (G ′)dout

v (G ′) + din
u (G ′)

din
v (G ′)dout

u (G ′)2

)

−
∑

(u,v)∈{(q,p)}

(
1

dout
u (G ′)dout

v (G ′) + din
u (G ′)

din
v (G ′)dout

u (G ′)2

)

−
∑

(u,v)∈Ẽ

1
dout
u (G)dout

v (G) +
∑

(u,v)∈Ẽ

1
dout
u (G ′)dout

v (G ′)

−
∑

(u,v)∈{(p,q)}

1
dout
u (G ′)dout

v (G ′)

 .

(3.12)

The graphs in real scenes tend to have a large scale, and adding an edge has minimal
impact on the other nodes of the original graph. Therefore, we ignore the effect
of adding an edge on the in/out degree of the original set of edges here. We can
simplify the above equation as

J D
VN(G)− J D

VN(G ′) ≈ 1
2n

− ∑
(u,v)∈{(q,p)}

(
1

dout
u (G ′)dout

v (G ′) + din
u (G ′)

din
v (G ′)dout

u (G ′)2

)

−
∑

(u,v)∈{(p,q)}

1
dout
u (G ′)dout

v (G ′)

 < 0.

(3.13)
After turning a directed edge into an undirected edge, the von Neumann entropy

decreases. This means that by removing the link directions, the obtained graph loses
part of the structural information contained in the directed graph. We would lose
more and more structural information as we gradually remove the directed structure.
Ye et al. [205] have the same point and use the generated graphs to experimentally
corroborate this idea. The existing undirected graph convolution used on directed
graphs suffers from the limitation of not being able to learn complete information
about the directed graph structure.

In order to solve this problem, we propose a spectral-base GCN model for directed
graph that leverages First- and Second-order Proximity in the following sections.

37

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

3.3 Second-order Directed Graph Convolution
In this section, we present our spectral-based GCN model f(X,A) for directed

graphs that leverages the First- and Second-Order Proximity, called DGCN. We
provide the mathematical motivation of directed graph convolution and consider
a multi-layer Graph Convolutional Network which has the following layer-wise
propagation rule, where

ÂF = D̃−

1
2

F ÃF D̃−
1
2

F

ÂSin = D̃−
1
2

Sin
ÃSinD̃

− 1
2

Sin

ÂSout = D̃−
1
2

SoutÃSoutD̃
− 1

2
Sout

, (3.14)

and

H(l+1) = Γ
(
σ(ÂFH(l)Θ(l)), σ(ÂSinH(l)Θ(l)), σ(ÂSoutH(l)Θ(l))

)
. (3.15)

Here, ÃF is the normalized First-order Proximity matrix with self-loop and ÃSin , ÃSout

are the normalized Second-order Proximity matrices with self-loop, which are defined
in Section 3.3.1. Γ(·) is a fusion function combines the proximity matrices together
defined in Section 3.3.2. Θ(l) is a shared trainable weight matrix and σ(·) is an
activation function. H(l) is the matrix of activation in the lth layer and H(0) = X.

3.3.1 First- and Second-order Proximity

To conduct the feature extraction, we not only obtain the node’s features from its
directly adjacent nodes, but also extract the hidden information from second-order
neighbor nodes. Different from other methods considering K-hop neighborhood
information[28, 1], we define First- and Second-order Proximity in directed graphs
and show schematically descriptions in Figure 3.3.

3.3.1.1 First-order Proximity

The first-order proximity refers to the local pairwise proximity between the nodes
in a graph, which is formally defined as follows:

Definition 4. First-order Proximity. Given a graph G = (V , E), for node
u, v ∈ V, if edge (u, v) ∈ E or (v, u) ∈ E, we define that node u and v to be
first-order proximities.

38

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

(c.i) In-degree Proximity (c.ii) Out-degree Proximity

4
9 10

3

7
1

8
2

6

5

(c) Second-order Proximity

(b) First-order Proximity(a) Original Graph

4
9 10

3

7
1

8
2

6

5

4
9 10

3

7
1

8
2

6

5

4
9 10

3

7
1

8
2

6

5

Figure 3.3: First- and second-order proximity examples in a directed graph. The
first-order proximity of node 1 in Subgraph(b) is node {4, 5, 6, 7, 8}, but node 1 is not
a first-order proximity to node 2, because the edges {1→ 2} or {2→ 1} do not exist.
In Subgraph(c.i), node 1 and node 2 have second-order in-degree proximity, because
they share common neighbors {1 ← (5, 6) → 2}; while node 1 and node 3 have
second-order out-degree proximity, because of {1→ (7, 8)← 3} in Subgraph(c.ii).

The illustration of first-order proximity is shown in Figure 3.3(b). Each node in
the graph has its own first-order proximity neighbor nodes, and we can emulate the
form of the adjacency matrix to define a first-order proximity matrix to capture the
properties of the first-order proximity. We define the first-order proximity matrix as
follows:

Definition 5. First-order Proximity Matrix. Given a graph G = (V , E), the
first-order proximity matrix AF between node u and v for each edge (u, v) in the
graph is defined as

AF (u, v) = Asym(u, v), (3.16)

where Asym is the symmetric matrix of adjacency matrix A. If there is no edge from
node u to v or v to u, AF (u, v) is equal to 0.

In Figure 3.3(b), it is easy to find that node 1 has first-order proximity with
node 4. Note that the first-order proximity is relaxed for directed graphs. We use

39

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

the symmetric matrix to replace to original one, which is inevitable losing some
directed informations. For this part of the missing information, we will use another
way to retain it, which is the second-order proximity. This problem does not exist
for undirected graphs because its weights matrix is symmetric.

3.3.1.2 Second-order Proximity

The second-order proximity assumes that if two nodes share common neighbors
tend to be similar. Formally, we define second-order proximity as

Definition 6. Second-order Proximity. Given a graph G = (V , E), for node
u, v ∈ V, if there exist any node i ∈ V and edges {(i, u), (i, v)} ∈ E , we say that node
u and v to be second-order in-degree proximities. Similarly, if there exist any node
i ∈ V and edges {(u, i), (v, i)} ∈ E, we define that node u and v to be second-order
out-degree proximities.

Second-order proximity relationships can assist in identifying nodes that possess
similarity through shared neighborhood nodes, despite not being directly connected.
The degree of second-order proximity between nodes is determined by the number
of links with their shared neighborhood nodes. In this case, we build second-order
proximity matrices, so that similar nodes can be connected with each other with
different connection weights. The specific definition is as follows:

Definition 7. Second-order Proximity Matrices. In a graph G, for node u and
v, we define the second-order in-degree proximity matrix ASin(u, v) and out-degree
proximity matrix ASout(u, v):

ASin(u, v) =
∑
i∈V

Ai,uAi,v∑
j∈V Ai,j

(3.17)

and

ASout(u, v) =
∑
i∈V

Au,iAv,i∑
j∈V Aj,i

. (3.18)

Since ASin(u, v) sums up the node degrees which array to both u and v, i.e.,∑
i A{u← i→ v}, it can best reflect the similarity of the in-degree between node

u and v. The larger the ASin(u, v), the higher the similarity of the second-order
in-degree. Similarly, ASout(u, v) measures the second-order out-degree proximity by

40

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

accumulating the node degrees from both u and v, i.e., ∑i A{u → i ← v}. If no
shared nodes linked from/to u and v, we set their second-order proximity as 0. A
visualization of these two proximities are shown in Figure 3.3(c) and the pseudocode
is shown in Algorithm 1.

The second-order proximity of node u and v is pair-wise, thus, ASin(u, v) =
ASin(v, u) and ASout(u, v) = ASout(v, u), i.e., ASin and ASout are symmetric.

Algorithm 1: First- and Second-order Proximity computation procedure
Input: graph: G = (V , E);

graph adjacency matrix: A;
feature matrix: X

Output: First- and Second-order proximity matrices: AF , ASin and ASout

1: for u ∈ V do
2: for v ∈ V do
3: AF (u, v)← Asym(u, v)
4: SUMin ← 0
5: SUMout ← 0
6: for i ∈ V do
7: if (i, u) & (i, v) ∈ E then
8: SUMin ← SUMin + Ai,uAi,v∑

j
Ai,j

9: if (u, i) & (v, i) ∈ E then
10: SUMout ← SUMout + Au,iAv,i∑

j
Aj,i

11: ASin(u, v)← SUMin
12: ASout(u, v)← SUMout

13: return AF ,ASin ,ASout

3.3.2 Second-order Directed Graph Convolution

In the previous section, we define the first-order and second-order proximity,
and have obtained three proximity symmetric matrices AF ,ASin and ASout . Similar
to the authors that define the graph convolution operation on undirected graphs
in Section 3.2, we use first- and second-order proximity matrices to achieve graph
convolution of directed graphs.

In Equation 3.7, the adjacency matrices Aun of the graph stores the information
of the graph and provides the receptive field for the filter Θ, so as to realize the
transformation from the graph signal X to the convolved signal Z′. It is worth

41

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

noting that the first- and second-order proximity matrices we have defined have
similar functions: first-order proximity provides a ’1-hop’ like receptive field, and
second-order proximity provides a ’2-hop’ like receptive field. In addition to this,
we need to show that the first- and second-order proximity matrices have the same
properties as Aun and are able to perform spectral graph convolution. We have the
following theorem of first- and second-order proximity matrices:

Theorem 1. The Laplacian matrices of the first- and second-order proximities
AF ,ASin and ASout are positive semi-definite matrices.

Proof. According to Definition 5 and 7, AF ,ASin and ASout are symmetric. We can
consider these matrices as adjacency matrices for undirected graphs Gun,F , Gun,Sin

and Gun,Sout , respectively. Unlike Gun, the edges of these undirected graphs are
weighted, i.e., the adjacency matrix no longer has only 0 or 1 values. We mark
this kind of graph as weighted undirected graph Ḡ = (V̄ , Ē) with edge weights
w̄(u, v),∀(u, v) ∈ Ē . The weight matrix W̄ = (w̄(u, v)) ∈ Rn×n where w(u, v) = 0 if
(u, v) /∈ Ē and weighted degree matrix D̄ = diag(d̄(u)), where d̄(u) = ∑

(u,v)∈Ē w̄(u, v).
The weighted Laplacian is formulated as

L̄ = D̄− W̄. (3.19)

Let’s let eu ∈ {0, 1}n be the standard basis vectors (1 in the u-th coordinate, 0 ’s
else where). The weighted Laplacian can be written in this format [186]:

L̄ = D̄− W̄ =
∑

(u,v)∈Ē
w̄(u, v)(eu − ev)(eu − ev)T . (3.20)

Since (eu − ev)(eu − ev)T is positive semi-definite, L̄ is a sum of non-negative
coefficients with positive semi-definite matrices, which implies L̄ is positive semi-
definite. So for Gun,F , Gun,Sin and Gun,Sout which belong to the weighted undirected
graph, their Laplacian matrices are all positive semi-definite.

According to Definition 3.2, graph Laplacian matrix is defined on undirected
graphs and requires the adjacency matrix to be symmetric, we cannot directly
use the definition of the undirected graph Laplacian matrix for graph convolution
operations on directed graphs. Theorem 1 gives us the theoretical basis for spectral
graph analysis using first- and second-order proximity matrices. For any directed

42

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

graph, we can use the above method to convert it into proximity metrics and then
perform graph convolution operations.

Proximity Convolution

We define the first-order proximity convolution fF (X, ÃF), second-order in- and
out-degree proximity convolution fSin(X, ÃSin) and fSout(X, ÃSout):

ZF = fF (X, ÃF) = D̃−
1
2

F ÃF D̃−
1
2

F XΘ

ZSin = fSin(X, ÃSin) = D̃−
1
2

Sin
ÃSinD̃

− 1
2

Sin
XΘ

ZSout = fSout(X, ÃSout) = D̃−
1
2

SoutÃSoutD̃
− 1

2
SoutXΘ

, (3.21)

where adjacency matrix Ã (A added self-loop) is used in the definition to derive
ÃF , ÃSin and ÃSout . D̃F = Diag(∑n

v ÃF (u, v)), D̃Sin = Diag(∑n
v ÃSin(u, v)) and

D̃Sout = Diag(∑n
v ÃSout(u, v)).

It can be seen that ZF ,ZSin and ZSout not only obtain rich first- and second-order
neighbor feature information, but ZSin and ZSout also retain the directed graph
structure information. Based on these facts, we further design a fusion method to
integrate the three signals together, so as to retain the characteristics of the directed
structure while obtaining the surrounding information.

Fusion Operation

Directed graph fusion operation Γ is a signal fusion function of the first-order prox-
imity convolution output ZF , second-order in- and out-degree proximity convolution
outputs ZSin and ZSout :

Z = Γ(ZF ,ZSin ,ZSout). (3.22)

Fusion function Γ can be various, such as normalization functions, summation
functions, and concatenation. In practice, we find concatenation fusion has the best
performance. A simple example is:

Z = Concat(ZF , λZSin , µZSout), (3.23)

where Concat(·) is the concatenation of matrices, λ and µ are weights to control
the importance between different proximities. For example, in a graph with fewer

43

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

second-order neighbors, we can reduce the values of λ and µ and use more first-order
information. λ and µ can be set manually or trained as learnable parameters.

For a given features matrix X and a directed adjacency matrix A, after taking
all the steps above, we can get the final directed graph result Z = f(X,A).

Proxim
ity C

onvolution

FC
 Layer

Softm
ax

Ŷ
<latexit sha1_base64="jQoFLj5SkvHypdh27hGDNo1agEw=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAiuSlIFXRbduKxgH9KEMplO2qGTSZi5KZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEsE1OM63tba+sbm1Xdmp7u7tHxzaR8cdHaeKsjaNRax6AdFMcMnawEGwXqIYiQLBusHkrvC7U6Y0j+UjzBLmR2QkecgpASMNbNsbE8i8iMA4CLOnPB/YNafuzIFXiVuSGirRGthf3jCmacQkUEG07rtOAn5GFHAqWF71Us0SQidkxPqGShIx7Wfz5Dk+N8oQh7EyTwKeq783MhJpPYsCM1lE1MteIf7n9VMIb/yMyyQFJuniUJgKDDEuasBDrhgFMTOEUMVNVkzHRBEKpqyqKcFd/vIq6TTq7mW98XBVa96WdVTQKTpDF8hF16iJ7lELtRFFU/SMXtGblVkv1rv1sRhds8qdE/QH1ucPKBmT/w==</latexit>

Input feature

X<latexit sha1_base64="ug3MRTkFEmuvBZK7pT+b5UnBryw=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcRSEWWfaL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bJ54Ss6sMiBhrO1TSObq742MRsZMosBOzhKaZW8m/ud1Uwyv/UyoJEWu2OKjMJUEYzI7nwyE5gzlxBLKtLBZCRtRTRnakkq2BG/55FXSqlW9i2rt/rJSv8nrKMIJnMI5eHAFdbiDBjSBgYJneIU3xzgvzrvzsRgtOPnOMfyB8/kDzeeRAA==</latexit>

<latexit sha1_base64="F1SstRATZTWwDwZvBN806C5UjPA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUkP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A2GOM9g==</latexit>n

<latexit sha1_base64="DMhI+j9WmrSyME+AaEzbcfnxi+A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUYP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4Ax7eM6w==</latexit>c

<latexit sha1_base64="P3HG43zigpD3ywGkfhi01453otw=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4A2lJvJpB06mYSZiVBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGdzO/88SU5ol8NJOU+TEOJY84RWOlTl/YaIiDas2tu3OQVeIVpAYFmoPqVz9MaBYzaahArXuemxo/R2U4FWxa6WeapUjHOGQ9SyXGTPv5fN0pObNKSKJE2ScNmau/J3KMtZ7EgU3GaEZ62ZuJ/3m9zEQ3fs5lmhkm6eKjKBPEJGR2Owm5YtSIiSVIFbe7EjpChdTYhiq2BG/55FXSvqh7V3X34bLWuC3qKMMJnMI5eHANDbiHJrSAwhie4RXenNR5cd6dj0W05BQzx/AHzucPPhePgQ==</latexit>

�
<latexit sha1_base64="lhdCbeeq104/O61Yae5JMm53kmA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnRmEByhL3NXrJkd+/YnRNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSqWw6PvfXmFldW19o7hZ2tre2d0r7x882iQzjDdYIhPTiqjlUmjeQIGSt1LDqYokb0bDm6nffOLGikQ/4CjloaJ9LWLBKDrpvqOybrniV/0ZyDIJclKBHPVu+avTS1imuEYmqbXtwE8xHFODgkk+KXUyy1PKhrTP245qqrgNx7NTJ+TEKT0SJ8aVRjJTf0+MqbJ2pCLXqSgO7KI3Ff/z2hnGV+FY6DRDrtl8UZxJggmZ/k16wnCGcuQIZUa4WwkbUEMZunRKLoRg8eVl8nhWDS6q/t15pXadx1GEIziGUwjgEmpwC3VoAIM+PMMrvHnSe/HevY95a8HLZw7hD7zPH16wjdo=</latexit>µ

A 2 Rn⇥n

<latexit sha1_base64="buhMoar2gFbEhaFmmm22nJnqU1o=">AAACD3icbVBLS8NAEJ74rPUV9ehlsSg9lUQK6q3ixWMV+4Amls120y7dbMLuRigh/8CLf8WLB0W8evXmv3H7OGjrBwPffDPDzHxBwpnSjvNtLS2vrK6tFzaKm1vbO7v23n5TxakktEFiHst2gBXlTNCGZprTdiIpjgJOW8HwalxvPVCpWCzu9CihfoT7goWMYG2krn3iRVgPgjC7zJHHBJqmQXab32cm0yyiCom8a5ecijMBWiTujJRghnrX/vJ6MUkjKjThWKmO6yTaz7DUjHCaF71U0QSTIe7TjqECmz1+NvknR8dG6aEwliaERhP190SGI6VGUWA6x+eq+dpY/K/WSXV47mdMJKmmgkwXhSlHOkZjc1CPSUo0HxmCiWTmVkQGWGKijYVFY4I7//IiaZ5W3Grl4qZaqpVndhTgEI6gDC6cQQ2uoQ4NIPAIz/AKb9aT9WK9Wx/T1iVrNnMAf2B9/gAFAZyX</latexit>

Output

First- and second-order proximity

<latexit sha1_base64="IR+GdKtVLibYRdt4RIuAj6ifQQo=">AAACIXicbVDLTsMwEHTKq5RXgSMXiwqJU5UgED1WcOHIq1DRlMhxndaq40T2BlFZ+RUu/AoXDiDEDfEzuI8DtIxkaTyzq92dMBVcg+t+OYW5+YXFpeJyaWV1bX2jvLl1o5NMUdagiUhUMySaCS5ZAzgI1kwVI3Eo2G3YPx36tw9MaZ7IaxikrB2TruQRpwSsFJRrfkygF0bmLg/MVWB8YI9gkgzyPMc+l3jsh+Yyx/fGfoHHTONeHpQrbtUdAc8Sb0IqaILzoPzpdxKaxUwCFUTrluem0DZEAaeC5SU/0ywltE+6rGWpJHZO24wuzPGeVTo4SpR9EvBI/d1hSKz1IA5t5XBfPe0Nxf+8VgZRrW24TDNgko4HRZnAkOBhXLjDFaMgBpYQqrjdFdMeUYSCDbVkQ/CmT54lNwdV76jqXhxW6ieTOIpoB+2ifeShY1RHZ+gcNRBFT+gFvaF359l5dT6cz3FpwZn0bKM/cL5/AKblpQI=</latexit>

Z
S

o
u
t 2

R
n⇥

h

<latexit sha1_base64="172qSFh2wtPq2K53RNP2+HLnh2M=">AAACIHicbVDLTsMwEHR4U14FjlwsKiROVYJA5VjBhSOvAqIJkeM6rYXjRPYGUVn5FC78ChcOIAQ3+BrcNgcojGRpPLOr3Z0oE1yD6346E5NT0zOzc/OVhcWl5ZXq6tqFTnNFWYumIlVXEdFMcMlawEGwq0wxkkSCXUa3hwP/8o4pzVN5Dv2MBQnpSh5zSsBKYbXhJwR6UWyui9CchcYHdg+Gy6IosM8lHtmROS3wjbFf4AnTuFeE1Zpbd4fAf4lXkhoqcRxWP/xOSvOESaCCaN323AwCQxRwKlhR8XPNMkJvSZe1LZXEzgnM8MACb1mlg+NU2ScBD9WfHYYkWveTyFYO9tXj3kD8z2vnEO8H9twsBybpaFCcCwwpHqSFO1wxCqJvCaGK210x7RFFKNhMKzYEb/zkv+Rip+7t1d2T3VrzoIxjDm2gTbSNPNRATXSEjlELUfSAntALenUenWfnzXkflU44Zc86+gXn6xukFqR3</latexit>

Z
S

in 2
R

n⇥
h

<latexit sha1_base64="xpI6UqH0f81bZ/hS7AWryDqn1jI=">AAACEnicbVDLSsNAFJ34rPUVdelmsAi6KYkouiwK4rKKfWBby2Q6aYdOJmHmRigh3+DGX3HjQhG3rtz5N07aLLT1wMCZc+7l3nu8SHANjvNtzc0vLC4tF1aKq2vrG5v21nZdh7GirEZDEaqmRzQTXLIacBCsGSlGAk+whje8yPzGA1Oah/IWRhHrBKQvuc8pASN17cN2QGDg+cld2r3EbS7xRPCSmxTfJ+YLPGAaD9KuXXLKzhh4lrg5KaEc1a791e6FNA6YBCqI1i3XiaCTEAWcCpYW27FmEaFD0mctQyUxczrJ+KQU7xulh/1QmScBj9XfHQkJtB4FnqnM9tXTXib+57Vi8M86CZdRDEzSySA/FhhCnOWDe1wxCmJkCKGKm10xHRBFKJgUiyYEd/rkWVI/KrsnZef6uFQ5z+MooF20hw6Qi05RBV2hKqohih7RM3pFb9aT9WK9Wx+T0jkr79lBf2B9/gDrB52f</latexit>

Z
F
2

R
n⇥

h

<latexit sha1_base64="NK8rs2U0w76O7O/iRZzFHqladE4=">AAACaXicbVHRatswFJW9bmvTbnNWVsr6IhYGGYxgj43upVBWGH1sWZOUxsHIynUiIktGui4LxrBv3Nt+YC/9iclpoF3TC4LDOedy7z1KCykshuEfz3+y8fTZ882t1vbOi5evgvbrgdWl4dDnWmpzmTILUijoo0AJl4UBlqcShun8pNGH12Cs0OoCFwWMczZVIhOcoaOS4FecM5ylWXVVH8W6AMNQG8VyqE60cqY6lpBh986VVN/rjzSWbsSE0fv8j6SKEX5iJVRdN568fFzXJTpDbMR0hh+SoBP2wmXRdRCtQIes6iwJfscTzcscFHLJrB1FYYHjihkUXELdiksLBeNzNoWRg80tdlwtk6rpe8dMaKaNewrpkr3fUbHc2kWeOmezuX2oNeRj2qjE7OvYXV6UCIrfDspKSVHTJnY6EQY4yoUDjBvhdqV8xgzj6D6n5UKIHp68DgafetGXXnj+uXP8bRXHJjkg70iXROSQHJNTckb6hJO/3o73xtvzbvy2v++/vbX63qpnl/xXfucfbei90Q==</latexit>

Z = Concat (ZF ,�ZSin
, µZSout

)

<latexit sha1_base64="F1SstRATZTWwDwZvBN806C5UjPA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUkP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A2GOM9g==</latexit>n
<latexit sha1_base64="f0E7O87RrtsPUFt7oOXFAwOkp6Q=">AAACEXicbVC5TsNAEF2HK4TLQEmzIkJKFdkcgjKChjIgcojYROvNOlllvbZ2x0iR5V+g4VdoKECIlo6Ov2FzFBB40khv3sxoZl6QCK7Bcb6swsLi0vJKcbW0tr6xuWVv7zR1nCrKGjQWsWoHRDPBJWsAB8HaiWIkCgRrBcOLcb11z5TmsbyBUcL8iPQlDzklYKSuXfEiAoMgzG5z7HGJp2mQXef4LjMp8IhpfDTIu3bZqToT4L/EnZEymqHetT+9XkzTiEmggmjdcZ0E/Iwo4FSwvOSlmiWEDkmfdQyVxCzys8lHOT4wSg+HsTIhAU/UnxMZibQeRYHpHB+s52tj8b9aJ4XwzM+4TFJgkk4XhanAEOOxPbjHFaMgRoYQqri5FdMBUYSCMbFkTHDnX/5LmodV96TqXB2Xa+czO4poD+2jCnLRKaqhS1RHDUTRA3pCL+jVerSerTfrfdpasGYzu+gXrI9vC9CdIw==</latexit>

Z 2 Rn⇥3h

Pre-processing Directed Graph Convolutional Networks Output layer

Figure 3.4: The schematic depiction of DGCN for semi-supervised learning. Model
inputs are an adjacent matrix A and a features matrix X, while outputs are labels
of predict nodes Ŷ.

3.3.3 Implementation

In the previous section, we proposed a simple and flexible model on the directed
graph, which can extract the surrounding information efficiently and retain the
directed structure. In this section, we will implement our model to solve semi-
supervised node classification task. More specifically, how to mine the similarity
between node class using directed adjacency matrix A when there is no graph
structure information in node feature matrix X.

Definition 8. Semi-Supervised Node Classification[1]. Given a graph G =
(V , E) with adjacency matrix A, and node feature matrix X ∈ Rn×c, where n = |V|
is the number of nodes and c is the feature dimension. Given a subset of nodes
VL ⊂ V, where nodes in VL have observed labels and generally |VL| << |V|. The
task is using the labeled subset VL, node feature matrix X and adjacency matrix A
predict the unknown label in VUL = V \ VL.

For this task, we build a two layer network model on directed graph with a
directed adjacency matrix A and node feature matrix X, is schematically depicted
in Figure 3.4. In the first step, we calculate the first- and second-order proximity
matrices ÂF , ÂSin and ÂSout according to Equation 3.15 in the preprocessing stage.
Our model can be written in the following form of forward propagation as

44

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Ŷ = f(X,A) = Softmax

Concat

ReLU

ÂFXΘ(0)

λÂSinXΘ(0)

µÂSoutXΘ(0)

Θ(1)

 . (3.24)

In this formula, the first layer is the directed graph convolution layer. Three different
proximity convolutions share a same filter weight matrix Θ(0) ∈ Rc×h, which can
transform the input dimension c to the embedding size h. After feature matrix X
through the first layer, there will be three different convolved results. Then we use a
fusion function to concatenate them together, λ and µ are variable weights to trade
off first- and second-order feature embedding. The second layer is a fully connected
layer, which we use to change feature dimension from 3h to d. d is the output
dimension. Θ(1) ∈ R3h×d is an embedding-to-output weight matrix. The softmax
activation function is defined as Softmax (zi) = 1

Z exp (zi) with Z = ∑
i exp (zi) and

applied row-wise. We use labeled examples to evaluate the cross-entropy error for
semi-supervised node classification task:

Lε(Y, Ŷ) = −
∑
l∈VL

d∑
i=1

Yli ln Ŷli (3.25)

where Yl is the actual class and Ŷl is the predict class of node l. VL is the subset of
V which is labeled. The pseudocode of DGCN is shown in Algorithm 2.

3.3.4 Discussion

3.3.4.1 Time and Space Complexity

For the graph convolution defined in Equation 3.21, we can use a sparse matrix
to store directed adjacency matrix A. Because we use full batch training in this
task, full dataset has to be loaded into memory for every iteration. The memory
space cost is O(|E|), which means it is linear with the number of edges.

At the same time, we use the sparse matrix and the density matrix to multiply
during the convolution operation. The multiplication of the sparse matrix can be
considered to be linearly related to the number of edges |E|. In the semi-supervised

45

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Algorithm 2: DGCN for semi-supervised node classification procedure
Input: graph: G = (V , E);
graph adjacency matrix: A; features matrix: X;
node class label: Y;
weight matrices: Θ;
concat weight: λ, µ
Output: Predict class matrix Ŷ

1: Initialize Θ ;
Pre-processing

2: Ã← A + I
3: ÃF , ÃSin , ÃSout ← Algo1(Ã)
4: D̃F ← RowNorm(ÃF)
5: D̃Sin ← RowNorm(ÃSin)
6: D̃Sout ← RowNorm(ÃSout)

Second-order Directed Graph Convolution
7: ZF ← D̃−

1
2

F ÃF D̃−
1
2

F XΘ
8: ZSin ← D̃−

1
2

Sin
ÃSinD̃

− 1
2

Sin
XΘ

9: ZSout ← D̃−
1
2

SoutÃSoutD̃
− 1

2
SoutXΘ

10: Z = ReLU(Concat(ZF , λZSin , µZSout))
Downstream Task

11: Ŷ = Softmax(FC(Z))
12: loss← Lε(Y, Ŷ)
13: SGD(loss)
14: return Ŷ

classification task, we need to multiply with Θ0 ∈ Rc×h and Θ1 ∈ R3h×d. Thus, we
can obtain the computational complexity of the model as O(|E|chd).

3.3.4.2 First- & Second-order Proximities Evaluation

Furthermore, to measure our model’s ability to extract surrounding information,
we define two indicators[69, 171] on the directed graph: Feature Smoothness, which
is used to evaluate how much surrounding information we can obtain and Label
Smoothness for evaluating how useful the obtained information is.

First, for a node in a directed graph, we need to know what its surroundings,
i.e., define the connectivity between a node and its surroundings. Similar to defining
the the first- and second-order proximities in directed graph, we define the first- and
second-order edges as follows.

46

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Definition 9. First & second-order edges in directed graph. Given a di-
rected graph G = (V , E). For an order pair (u, v), where u and v ∈ V. If (u, v) ∈ E,
we say that the order pair (u, v) is a first-order edge. If there exists a node i ∈ V that
satisfies the order pairs (i, u) and (i, v) ∈ E or (u, i) and (v, i) ∈ E, we define the
order pair (u, v) as the second order edge. The edge set has both first & second-order
edge of G denoted by E ′.

For a node, if the features of its surrounding nodes are more different from its
own features, it suggests that it can get more different types of information from
the surrounding nodes. Intuitively, when we want to measure how much different
information can a node obtain from its surroundings, we will consider measuring
how frequently the different features of the surrounding nodes appear. Inspired by
graph smoothness, which is an effective measure of the signal frequency in graph
signal processing [222, 69], we define the feature smoothness on a directed graph as

Definition 10. Feature Smoothness. The Feature Smoothness λf over node
feature space is defined as follows

λf =

∥∥∥∑u∈V

(∑
(u,v)∈E ′ (xu − xv)2

)∥∥∥
1

|E ′| · c
, (3.26)

where || · ||1 is the Manhattan norm, c is the node feature dimension and xu is node
feature of node u.

According to Definition 10, when λf is large, the feature signals of a graph have
higher frequency, meaning that feature vectors xu and xv are more likely to be
dissimilar for two connected nodes u and v in the graph. This indicates that nodes
with dissimilar features tend to be connected. Intuitively, in a graph with high
frequency feature sets, the context of a node can gain more information from its
surrounding. Hou et al. [69] theoretically prove the same point from the perspective
of information loss in Theorem 4: a large λf means that a GNN model can obtain
more information from graph data.

For the node classification task, we want to determine how useful the information
obtained from the surrounding nodes is. We consider that the information obtained
is valid when the current node label is consistent with the surrounding node labels,
otherwise, it is invalid. Based on this, we define Label Smoothness λl as

47

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Definition 11. Label Smoothness. The Label Smoothness λl is defined as

λl =
∑

(u,v)∈E ′ I (u ' v)
|E ′|

, (3.27)

where I(·) is an indictor function and we define u ' v if the label of node u and v
are the same.

According to Definition 11, when λl is large, nodes with different labels tend to
be interconnected, resulting in a greater negative impact on the task. Conversely,
when λl is small, a node receives more positive information from its surrounding.

By analyzing the above-mentioned indicators and their respective variations, we
can determine whether a graph model is capable of learning more useful information
from the graph structure. The experimental results in Section 3.4.3 demonstrate
that our model, in comparison to other methods for undirected graphs, is able to
extract more valuable information from directed graphs.

3.3.4.3 Generalization to other Graph Models

Our method using first-and second-order proximity to improve the convolution
receptive field and retain directed information has strong generalization ability.
In most spectral-based models, we can use these proximity matrices to replace
the original adjacency matrix. Take Simplifying Graph Convolutional Networks
(SGC)[187] as an example, we can generalize our method to the SGC as follows:

ŶS′ = Softmax (S′XΘ) , (3.28)

where we use the concatenation of first- and second-order proximity matrices AF ,ASin

and ASout to replace the origin K-th power of adjacency matrix SK and S is
the simplified adjacency matrix defined in SGC[187]. We mark the matrix after
concatenation as S′. Experimental results in Section 3.4.3 show that integrating our
method can not only make the SGC model applicable to directed graphs, but also
improve accuracy.

3.3.4.4 Relation with K-hop Methods

Our work considers not only the first-order relationship, but also the second-order
ones when extracting surrounding information. The first-order proximity has the
similar function to the 1-hop, which is to obtain the information of directly connected

48

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

points. However, the reason why we do not define our second-order relationship as
2-hop is that it does not need node u and node v to have a 2 degree path directly.

For the K-hop method, and K = 2, they need a K degree path from u to v,
i.e., {u → i → v} in directed graph. However, in our method, the second-order
pattern diagram is transformed into {u → i ← v} and {u ← i → v}, which is
obvious that we get information from the shared attributes among nodes, not from
the path. What’s more, when evaluating the second-order proximity of nodes, we
do not use the weights of the connecting edges between them, but use the sum of
the normalized weights of their shared nodes.

3.4 Experiments
In this section, we evaluate the effectiveness of our model using experiments. We

test on citation and co-purchase networks, and then evaluate the performance on
directed and undirected dataset.

3.4.1 Datasets and Baselines

We use the several datasets to evaluate our model. In the citation network
datasets: Cora-Full [10], Cora-ML [10], CiteSeer [144] , DBLP [127] and
PubMed [121], nodes represent articles, while edges represent citation between
articles. These datasets also include bag-of-words feature vectors for each article.
In addition to the citation network, we also use the Amazon Co-purchase Network:
Am-Photo and Am-Computers [145], where nodes represent goods, while edges
represent two kinds of goods that are often purchased together. Bag-of-words
encoded product reviews product category are also given as features, and class
labels are given by the product category. In the above datasets, except DBLP and
PubMed are undirected data we obtained, the rest are directed.

The origin Cora-ML has 70 classes, we combine the 2 classes that cannot
perform the dataset split to the nearest class. Label rate is the fraction of nodes in
the training set per class. We use 20 labeled nodes per class to calculate the label
rate. The detailed datasets description is shown in Table 3.1.

We compare our model to five state-of-the-art models that can be divided into
two main categories: 1) spectral-based GNNs including ChebNet [28], Graph

49

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Table 3.1: Datasets Details

Datasets Nodes Edges Classes Features Label rate

Cora-Full 19793 65311 68 8710 7.07%
Cora-ML 2995 8416 7 2879 4.67%
CiteSeer 3312 4715 6 3703 3.62%

DBLP 17716 105734 4 1639 0.45%
PubMed 18230 79612 3 500 0.33%

Am-Photo 7650 143663 8 745 2.10%
Am-Computer 13752 287209 10 767 1.45%

Convolutional Networks (GCNs) [88], Simplifying Graph Convolutional Networks
(SGC) [187] and 2) spatial-based GNNs containing GraphSage [54] and Graph
Attention Networks (GAT) [165].

For all baseline models, we use their model structure in the original papers,
which including layer number, activation function selection, normalization and
regularization selection, etc. It is worth noting that GraphSage has three variants
in the original article using different aggregators: mean, meanpool and maxpool.
In this chapter, we use mean as its aggregator as it performs best [145]. Besides,
we set the mini-batch size to 512 on Am-Photo and Am-Computer and 16 on
other datasets. For GCN, we set the size of hidden layer to 64 on Am-Photo and
Am-Computer and 16 on other datasets. We also fix the number of attention heads
to 8 for GAT, power number to 2 for SGC and k = 2 in ChebNets, as proposed in
the respective papers.

3.4.2 Experimental Setup

We implement the DGCN and all baseline models using the python library of
PyTorch and DGL. All the experiments are conducted on a server with one GPU
(NVIDIA GTX-2080Ti), two CPUs (Intel Xeon E5 * 2) and Ubuntu 18.04 System.

Our Method Setup We train the two-layer DGCN model built in Section 3.3.3
for semi-supervised node classification task and provide additional experiments to
explore the effect of model layers on the accuracy. We use full batch training, and
each iteration will use the whole dataset. For each epoch, we initialize weights
according to Glorot and Bengio[46] and initialize biases with zeros. We use Adam[86]

50

https://pytorch.org
https://www.dgl.ai

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

as optimizer with a learning rate of 0.01. Validation set is using for hyperparameter
optimization, which have weights(λ, µ) of first- and second-order proximity, dropout
rate for all layer, L2 regularization factor for the DGCN layer and embedding size.

Dataset Split The split of the dataset will greatly affect the performance of the
model[145, 90]. Especially for a single split, not only will it cause overfitting problems
during training, but it is also easy to get misleading results. In our experiments, we
will randomly split the data set and perform multiple experiments to obtain stable
and reliable results. What’s more, we also test the model under different sizes of
training set in Section 3.4.3. For train/validation/test splitting, we choose 20 labels
per class for training set, 500 labels for validation set and rest for test set, which
follows the split in GCN[88], which marked as Label Split.

3.4.3 Experimental Results

Semi-Supervised Node Classification
The comparison results of our model and baselines on seven datasets are reported

in Table 3.2. Reported numbers denote classification accuracy in percent. Except
DBLP and PubMed, all other datasets are directed. We train all models for a
maximum of 500 epochs and early stop if the validation accuracy does not increase
for 50 consecutive epochs in each dataset split, then calculate mean test accuracy
and standard deviation averaged over 10 random train/validation/test splits with
5 random weight initializations. We use the following settings of hyerparameters
for all datasets: drop rate is 0.5; L2 regularization is 5 · 10−4; λ = µ = 1 (we will
explain the reasons in later section). Besides, we choose embedding size as 128 for
Co-purchase Network: Am-Photo and Am-Computer, and 64 for others.

Our method achieved the state-of-the-art results on all datasets except Cora-
Full. Although SGC achieves the best results on Cora-Full, its performances
on other datasets are not outstanding. Our method achieves best results on both
directed (Cora-ML, CiteSeer) and undirected (DBLP, PubMed) datasets. Our
method is not significantly improved compared to GCN on the Am-Photo and Am-
Computer, mainly because our model has only one convolutional layer while GCN
uses two convolutional layers. The single layer network representation capability is
not enough to handle large nodes graph.

51

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Ta
bl
e
3.
2:

M
ea
n
te
st

ac
cu
ra
cy

an
d
st
an

da
rd

de
vi
at
io
n
in

pe
rc
en
t.

U
nd

er
lin

ed
bo

ld
fo
nt

in
di
ca
te
s
be

st
re
su
lts

.

La
be
l
Sp

lit
C

or
a-

F
ul

l
C

or
a-

M
L

C
it

eS
ee

r
D

B
LP

P
ub

M
ed

A
m

-P
ho

to
A

m
-C

om
pu

te
r

C
he

bN
et

58
.0
±

0.
5

79
.2
±

1.
4

59
.7
±

4.
0

64
.0
±

2.
8

74
.6
±

2.
5

82
.5
±

2.
4

72
.9
±

3.
0

G
C
N

59
.1
±

0.
7

81
.7
±

1.
2

64
.7
±

2.
3

71
.5
±

2.
7

76
.8
±

2.
2

90
.4
±

1.
5

81
.9
±

1.
9

SG
C

61
.2
±

0.
6

80
.3
±

1.
1

61
.4
±

3.
4

69
.2
±

2.
8

75
.8
±

2.
8

89
.4
±

1.
4

80
.2
±

1.
2

G
ra
ph

Sa
ge

58
.1
±

0.
7

80
.2
±

1.
6

62
.8
±

2.
1

68
.1
±

2.
5

75
.2
±

3.
2

89
.8
±

1.
9

80
.4
±

2.
5

G
AT

60
.8
±

0.
6

81
.5
±

1.
0

63
.7
±

2.
0

71
.8
±

2.
6

76
.5
±

2.
3

90
.0
±

1.
3

81
.2
±

2.
5

D
G

C
N

60
.8
±

0.
6

82
.0
±

1.
4

65
.4
±

2.
3

72
.5
±

2.
5

76
.9
±

1.
9

90
.8
±

1.
1

82
.0
±

1.
7

52

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

First- & Second-order Proximities Evaluation

Table 3.3: Smoothness values for First- and Second-order Proximity on different
datasets. 1st represents first-order proximity, 1st&2nd represents first- and second-
order proximity, λf means Feature Smoothness and λl means Label Smoothness.

Smoothness Cora-ML CiteSeer DBLP PubMed

1st λf (10−4) 3.759 8.719 3.579 3.135
1st&2nd λf (10−4) 9.789 54.720 36.810 20.480

1st λl 0.577 0.489 0.656 0.605
1st&2nd λl 0.393 0.574 0.459 0.547

Table 3.3 reports the two smoothness values of Cora-ML, CiteSeer, DBLP
and PubMed. After adding second-order proximity, the feature smoothness of
CiteSeer increases from 8.719× 10−4 to 54.720× 10−4, while the label smoothness
increases from 0.4893 to 0.5735. This change shows that the second-order proximity
is very effective on this dataset, which helps increase the quantity and improve the
quality of information from the surrounding. The label smoothness of other datasets
decreases slightly, while their feature smoothness significantly increase. In other
words, the second-order proximity widens the receptive field, thus greatly increases
the amount of information obtained.

(a) GCN (b) Ours w/ 1st Proximity (c) Ours w/ 1st&2nd Proximity

Figure 3.5: 2D t-SNE[114] visualizations of the first convolutional layer feature
outputs on Cora-ML dataset. (a) The data of different classes (denote by colors)
are distributed more clearly and compactly in our model feature map.

Besides, the second-order proximity preserves the directed structure information
which helps it to filter out valid information. The t-SNE results shown in Figure 3.5
also show that second-order proximity can help the model achieve better results.

53

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Generalization to other Model (SGC)
In order to test the generalization ability of our model, we design an experiment

according to the scheme proposed in Section 3.3.4.3. We use the concatenation
of first- and second-order proximity matrices to replace the origin K-th power of
adjacency matrix. The generalized SGC model is denoted by SGC+DGCN. In
addition, we set the power time K = 2 to the origin SGC model. We follow the
experimental setup described in the previous section, and the results are summarized
in Table 3.4. Obviously, our generalized model outperforms the original model on
all datasets, not only significantly improves classification accuracy, but also has
more stable performance (with smaller standard deviations). Our method has good
generalization ability because it has a simple structure that can be plugged into
existing models easily while providing a wider receptive field by the second-order
proximity matrices to improve model performance.

Table 3.4: Accuracy of origin SGC and generalized SGC. Underlined bold font
indicates best results.

Label Split Cora-ML CiteSeer DBLP PubMed

SGC 80.3± 1.1 61.4± 3.4 69.2± 2.8 75.8± 2.8
SGC+DGCN 82.3 ± 1.4 63.8 ± 2.0 71.1 ± 2.3 76.5 ± 2.3

Effects of Model Depth
We investigate the effects of model depth (number of convolutional layers) on

classification performance. To prevent overfitting with only one layer, we increase
the difficulty of the task and set the training set size per class to 10, validation set
size to 500 and the rest as test set. The other settings are the same with previous.
Results are summarized in Figure 3.6. Obviously, for the datasets experimented
here, the best results are obtained by a 1- or 2-layer model and test accuracy does
not increase when the model goes deeper.

The main reason is overfitting. The increase in the number of model layers not
only greatly increases the amount of parameters, but also widens the receptive field
of the convolution operation. When DGCN has only one layer, we only need to
obtain information from surrounding connected nodes and nodes of shared 1-hop
neighbors. When the DGCN changes to K layers, we need consider both K-hop

54

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

1 2 3 4 5 6
Model Depth (# of layers)

0.50

0.55

0.60

0.65

A
cc

.
CiteSeer

1 2 3 4 5 6
Model Depth (# of layers)

0.60

0.65

0.70

A
cc

.

DBLP

Figure 3.6: Effects to classification accuracy when DGCN goes deeper on CiteSeer
and DBLP.

neighborhoods and the points that share the K-hop neighbors. For a simple semi-
supervised learning task, deep DGCN obtains too much information, which easily
leads to overfitting.

(b) Test Accuracy

(a) Validation Accuracy

Cora-ML

Cora-ML CiteSeer

CiteSeer

<latexit sha1_base64="mEatgujZNx+NuQusoeRmHeLnVH8=">AAAB+nicbVA9TwJBEJ3DL8Qv1NJmIzGxIndGoyXRxhKjIAlcyN6yBxv247K7Z0JOfoKt9nbG1j9j6y9xgSsEfMkkL+/NZGZelHBmrO9/e4WV1bX1jeJmaWt7Z3evvH/QNCrVhDaI4kq3ImwoZ5I2LLOcthJNsYg4fYyGNxP/8Ylqw5R8sKOEhgL3JYsZwdZJ9x2RdssVv+pPgZZJkJMK5Kh3yz+dniKpoNISjo1pB35iwwxrywin41InNTTBZIj7tO2oxIKaMJueOkYnTumhWGlX0qKp+nciw8KYkYhcp8B2YBa9ifif105tfBVmTCappZLMFsUpR1ahyd+oxzQllo8cwUQzdysiA6wxsS6duS2RGJdcKMFiBMukeVYNLqr+3Xmldp3HU4QjOIZTCOASanALdWgAgT68wCu8ec/eu/fhfc5aC14+cwhz8L5+AZl8lIA=</latexit>µ

<latexit sha1_base64="nE7JIRdWBEAy/WogtA5FoYByda4=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APaoWQymTY0yQxJRihDwV9wq3t34tZfceuXmGlnYVsPBA7nnMu9OUHCmTau++2U1tY3NrfK25Wd3b39g+rhUVvHqSK0RWIeq26ANeVM0pZhhtNuoigWAaedYHyX+50nqjSL5aOZJNQXeChZxAg2Vur0uY2GeFCtuXV3BrRKvILUoEBzUP3phzFJBZWGcKx1z3MT42dYGUY4nVb6qaYJJmM8pD1LJRZU+9ns3Ck6s0qIoljZJw2aqX8nMiy0nojAJgU2I73s5eJ/Xi810Y2fMZmkhkoyXxSlHJkY5X9HIVOUGD6xBBPF7K2IjLDCxNiGFrYEYlqxpXjLFayS9kXdu6q7D5e1xm1RTxlO4BTOwYNraMA9NKEFBMbwAq/w5jw7786H8zmPlpxi5hgW4Hz9ApETlic=</latexit>

�

<latexit sha1_base64="mEatgujZNx+NuQusoeRmHeLnVH8=">AAAB+nicbVA9TwJBEJ3DL8Qv1NJmIzGxIndGoyXRxhKjIAlcyN6yBxv247K7Z0JOfoKt9nbG1j9j6y9xgSsEfMkkL+/NZGZelHBmrO9/e4WV1bX1jeJmaWt7Z3evvH/QNCrVhDaI4kq3ImwoZ5I2LLOcthJNsYg4fYyGNxP/8Ylqw5R8sKOEhgL3JYsZwdZJ9x2RdssVv+pPgZZJkJMK5Kh3yz+dniKpoNISjo1pB35iwwxrywin41InNTTBZIj7tO2oxIKaMJueOkYnTumhWGlX0qKp+nciw8KYkYhcp8B2YBa9ifif105tfBVmTCappZLMFsUpR1ahyd+oxzQllo8cwUQzdysiA6wxsS6duS2RGJdcKMFiBMukeVYNLqr+3Xmldp3HU4QjOIZTCOASanALdWgAgT68wCu8ec/eu/fhfc5aC14+cwhz8L5+AZl8lIA=</latexit>µ

<latexit sha1_base64="mEatgujZNx+NuQusoeRmHeLnVH8=">AAAB+nicbVA9TwJBEJ3DL8Qv1NJmIzGxIndGoyXRxhKjIAlcyN6yBxv247K7Z0JOfoKt9nbG1j9j6y9xgSsEfMkkL+/NZGZelHBmrO9/e4WV1bX1jeJmaWt7Z3evvH/QNCrVhDaI4kq3ImwoZ5I2LLOcthJNsYg4fYyGNxP/8Ylqw5R8sKOEhgL3JYsZwdZJ9x2RdssVv+pPgZZJkJMK5Kh3yz+dniKpoNISjo1pB35iwwxrywin41InNTTBZIj7tO2oxIKaMJueOkYnTumhWGlX0qKp+nciw8KYkYhcp8B2YBa9ifif105tfBVmTCappZLMFsUpR1ahyd+oxzQllo8cwUQzdysiA6wxsS6duS2RGJdcKMFiBMukeVYNLqr+3Xmldp3HU4QjOIZTCOASanALdWgAgT68wCu8ec/eu/fhfc5aC14+cwhz8L5+AZl8lIA=</latexit>µ<latexit sha1_base64="mEatgujZNx+NuQusoeRmHeLnVH8=">AAAB+nicbVA9TwJBEJ3DL8Qv1NJmIzGxIndGoyXRxhKjIAlcyN6yBxv247K7Z0JOfoKt9nbG1j9j6y9xgSsEfMkkL+/NZGZelHBmrO9/e4WV1bX1jeJmaWt7Z3evvH/QNCrVhDaI4kq3ImwoZ5I2LLOcthJNsYg4fYyGNxP/8Ylqw5R8sKOEhgL3JYsZwdZJ9x2RdssVv+pPgZZJkJMK5Kh3yz+dniKpoNISjo1pB35iwwxrywin41InNTTBZIj7tO2oxIKaMJueOkYnTumhWGlX0qKp+nciw8KYkYhcp8B2YBa9ifif105tfBVmTCappZLMFsUpR1ahyd+oxzQllo8cwUQzdysiA6wxsS6duS2RGJdcKMFiBMukeVYNLqr+3Xmldp3HU4QjOIZTCOASanALdWgAgT68wCu8ec/eu/fhfc5aC14+cwhz8L5+AZl8lIA=</latexit>µ

<latexit sha1_base64="nE7JIRdWBEAy/WogtA5FoYByda4=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APaoWQymTY0yQxJRihDwV9wq3t34tZfceuXmGlnYVsPBA7nnMu9OUHCmTau++2U1tY3NrfK25Wd3b39g+rhUVvHqSK0RWIeq26ANeVM0pZhhtNuoigWAaedYHyX+50nqjSL5aOZJNQXeChZxAg2Vur0uY2GeFCtuXV3BrRKvILUoEBzUP3phzFJBZWGcKx1z3MT42dYGUY4nVb6qaYJJmM8pD1LJRZU+9ns3Ck6s0qIoljZJw2aqX8nMiy0nojAJgU2I73s5eJ/Xi810Y2fMZmkhkoyXxSlHJkY5X9HIVOUGD6xBBPF7K2IjLDCxNiGFrYEYlqxpXjLFayS9kXdu6q7D5e1xm1RTxlO4BTOwYNraMA9NKEFBMbwAq/w5jw7786H8zmPlpxi5hgW4Hz9ApETlic=</latexit>

�

<latexit sha1_base64="nE7JIRdWBEAy/WogtA5FoYByda4=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APaoWQymTY0yQxJRihDwV9wq3t34tZfceuXmGlnYVsPBA7nnMu9OUHCmTau++2U1tY3NrfK25Wd3b39g+rhUVvHqSK0RWIeq26ANeVM0pZhhtNuoigWAaedYHyX+50nqjSL5aOZJNQXeChZxAg2Vur0uY2GeFCtuXV3BrRKvILUoEBzUP3phzFJBZWGcKx1z3MT42dYGUY4nVb6qaYJJmM8pD1LJRZU+9ns3Ck6s0qIoljZJw2aqX8nMiy0nojAJgU2I73s5eJ/Xi810Y2fMZmkhkoyXxSlHJkY5X9HIVOUGD6xBBPF7K2IjLDCxNiGFrYEYlqxpXjLFayS9kXdu6q7D5e1xm1RTxlO4BTOwYNraMA9NKEFBMbwAq/w5jw7786H8zmPlpxi5hgW4Hz9ApETlic=</latexit>

�

<latexit sha1_base64="nE7JIRdWBEAy/WogtA5FoYByda4=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APaoWQymTY0yQxJRihDwV9wq3t34tZfceuXmGlnYVsPBA7nnMu9OUHCmTau++2U1tY3NrfK25Wd3b39g+rhUVvHqSK0RWIeq26ANeVM0pZhhtNuoigWAaedYHyX+50nqjSL5aOZJNQXeChZxAg2Vur0uY2GeFCtuXV3BrRKvILUoEBzUP3phzFJBZWGcKx1z3MT42dYGUY4nVb6qaYJJmM8pD1LJRZU+9ns3Ck6s0qIoljZJw2aqX8nMiy0nojAJgU2I73s5eJ/Xi810Y2fMZmkhkoyXxSlHJkY5X9HIVOUGD6xBBPF7K2IjLDCxNiGFrYEYlqxpXjLFayS9kXdu6q7D5e1xm1RTxlO4BTOwYNraMA9NKEFBMbwAq/w5jw7786H8zmPlpxi5hgW4Hz9ApETlic=</latexit>

�

Figure 3.7: Accuracy in validation and test set for different weights (λ and µ)
selection on Cora-ML and CiteSeer.

55

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

Weights Selection of First- and Second-order Proximity
We set two hyperparameters λ and µ defined in Section 3.3.2 to adjust the first-

and second-order proximity weights when concatenating them. Figure 3.7 shows the
accuracy in validation and test set with different weights. We set λ and µ to change
within (0, 2]. We find that when the hyperparameters take the boundary values, the
accuracies decreases significantly. When the values of the two hyperparameters are
close, the accuracies of the model will increase.

This is because the second-order in-degree and out-degree proximity matrix
not only represent the relationship between the nodes’ shared neighbors, but also
encode the structure information of the graph, which needs both in- and out-degree
matrix. Besides, the unbalance of second-order in- and out-degree makes the optimal
hyperparameters combination differ for datasets. Therefore, we use a combination
λ = µ = 1 that can achieve balanced performance.

Figure 3.8: Accuracy for different training set sizes (number of labeled nodes per
class) on DBLP and CiteSeer.

Effects of Training Set Size
Since the label rates for real world datasets are often small, it is important to

study the performance of the model on small training set. Figure 3.8 shows how
the number of training nodes per class to affect accuracy of different models on
Cora-ML and DBLP. These four methods perform similarly under small training
set size. As the amount of data increases, the accuracy improves greatly. Our method
does not perform as well as GCN on CiteSeer and GAT on DBLP respectively.
This can be attributed to the second-order proximity and model structure. In the

56

CHAPTER 3. SECOND-ORDER GRAPH CONVOLUTION

case of less training data, the second-order proximity matrices will become very
sparse, which makes it unable to supplement sufficient information. And our model
has only one layer of convolution structure, which is not effective when we can not
get enough information. On the country, GAT uses eight fixed attention heads and
GCN uses two convolutional layers to aggregate node features.

3.5 Summary
In this chapter, we present a novel graph convolutional networks DGCN, which

can be applied to the directed graphs. We define first- and second-order proximity
on the directed graph to enable the spectral-based GCNs to generalize to directed
graphs. It can retain directed features of graph and expand the convolution opera-
tion receptive field to extract and leverage surrounding information. Besides, we
empirically show that this method helps increase the quantity and improve quality
of information obtained. Finally, we use semi-supervised classification tasks and
extensive experiments on various real-world datasets to validate the effectiveness and
generalization capability of first- and second-order proximity and the improvements
obtained by DGCNs over other models.

57

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Chapter 4

PageRank-based Graph Convolution

In the previous chapter, we introduce the first directed graph convolution network,
DGCN, which leverages first- and second-order proximity to expand the convolution
receptive field and retain directed features of the graph. However, DGCN mainly
improves the model structure and aggregation method by utilizing some manually
defined neighborhood aggregation methods. It compensates for information loss
caused by converting directed graphs to undirected graphs by increasing second-order
neighbors. Hence, this method has theoretical limitations. In this chapter, we present
another novel approach, DiGCN, for directed graph learning. DiGCN simplifies the
spectral-based graph convolution theoretically and extends it to directed graphs by
defining kth-order proximity. In brief, DiGCN in Chapter 4 extends the theory and
improves the structure based on the DGCN in Chapter 3.

4.1 Introduction
A majority of spectral-based GCNs transform directed graphs to undirected by

relaxing its direction structure [88, 187], i.e., trivially adding edges to symmetrize
the adjacency matrices. It will not only mislead message passing scheme to aggregate
the features with incorrect weights but also discard distinctive direction structure
[182], such as irreversible time-series relationships. Besides, there are several works
that learn the specific structure by defining motifs [118], inheritance relationship [84]
and second-order proximity[161]. However, these methods have to stipulate learning
templates or rules in advance, and is not capable to deal with complex structures
beyond their definitions.

Besides, most of the existing spectral-based GCNs enhance their capabilities

58

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

of feature extraction by stacking a number of graph convolutional layers [97, 38].
However, it often leads to feature dilution as well as overfitting problem when
models become deep [84, 97]. Inspired by Inception Network for image classification
[155], some works [140, 198, 1] widen their layers to obtain larger receptive fields
and increase learning abilities. However, they use the fixed adjacency matrix in
one layer, which increases the difficulty to capture multi-scale features. A scalable
neighborhood would be desirable to provide more scale information, especially for
nodes belonging to communities with different sizes. Moreover, choosing a proper
receptive field scheme to fuse multi-scale features together can help handle complex
structures in directed graphs.

To address these issues, we first extend the spectral-based graph convolution to
directed graphs by leveraging the inherent connections between graph Laplacian and
stationary distributions of PageRank [124]. Since the original directed graph is not
necessarily irreducible and aperiodic, the corresponding Markov chain does not have
unique stationary distribution. To solve this problem, we add a chance of teleporting
back to every node based on PageRank. However, the derived directed graph
Laplacian is too dense, and it is extremely time-consuming to perform convolution.
Thus, referring to personalized PageRank [5], we introduce an extra auxiliary node as
the teleport connected with every node to simplify fully-connected links in PageRank.
The simplified directed graph Laplacian can dramatically reduce the number of
edges without changing the properties (irreducible and aperiodic). In addition, we
theoretically analyze its properties and find that our Laplacian is the intermediate
form between the undirected and directed graph, and the degree of conversion is
determined by the teleport probability α.

Moreover, inspired by the Inception Network [155], we exploit kth-order proximity
between two nodes in a directed graph, which is determined through the shared
kth-order neighborhood structures of these two nodes. This does not require direct
kth-hop paths between them. By using this method, we design scalable receptive
fields, which not only allows us to learn features of different sizes within one
convolutional layer but also get larger receptive fields. This notion of proximity
also appears in network analysis (HITS[89, 221]), psychology [138] and daily life:
people who have a lot of common friends are more likely to be friends. In this way,
we avoid yielding unbalanced receptive fields caused by the asymmetric paths in

59

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

directed graphs. Besides that, to obtain r-range receptive field, our model only
requires stacking dlogk re layers instead of r GCN layers in conventional approaches.

Through experiments, we empirically show that Directed Graph Inception
Convolutional Networks (DiGCN) outperforms against competitive baselines. Ad-
ditionally, our directed graph convolution is superior to GCN’s convolution in the
mainstream directed graph benchmarks, especially over 20% accuracy on Cora-ML
dataset. Our implement is available at https://github.com/flyingtango/DiGCN.

4.2 PageRank-based Directed Graph Convolution
In this section, we first give the definition of directed graph Laplacian based on

PageRank, which is too dense to perform convolution well. We then simplify it by
personalized PageRank and analyze its properties. Finally, we give the definition of
directed graph convolution based on the above operations.

4.2.1 Directed Graph Laplacian based on PageRank

Formally, given a directed graph (directed graph) G = (V , E), its adjacency
matrix can be denoted as A = {0, 1}n×n, where n = |V|. The nodes are described
by the feature matrix X ∈ Rn×c, with the number of features c per node. GCN [88]
proposes the spectral graph convolution as Zu = ÂuXΘ, where Zu ∈ Rn×d is the
convolved result with output dimension d, Θ ∈ Rc×d is trainable weight and Âu

is the normalized self-looped version of undirected adjacency matrix Au (see [88]).
GCN and its variants need the undirected symmetric adjacency matrix Au as input,
therefore, they transform asymmetric A to symmetric form by relaxing direction
structure of directed graphs, e.g., let Au = (A + AT)/2 in their experiments1.

Noticing the inherent connections between graph Laplacian and stationary
distributions of Markov Chains [122], we can use the properties of Markov Chains
to help us solve the problem in directed graphs. Given a directed graph G = (V , E),
a random walk on G is a Markov process with transition matrix Prw = D−1A,
where the diagonal degree matrix D(i, i) = ∑

j A(i, j). The G may contain isolated
1There are various ways to construct an undirected graph from a directed graph. In this

chapter, we consider one of the most commonly used methods that averaging edge weights when
combination.

60

https://github.com/flyingtango/DiGCN

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

nodes in the periphery or could be formed into bipartite graph. Thus, Prw is not
necessarily irreducible and aperiodic, we can not guarantee this random walk has
unique stationary distribution.

Definition 12. Irreducible and Aperiodic: Given an input G = (V , E), G is
irreducible iff for any two vertices vi, vj ∈ V, there is an integer k ∈ Z+, s.t. Akij > 0.
Meanwhile, G is aperiodic iff the greatest common divisor of the lengths of its cycles
is one. The random walk P defined on G has the same irreducible and aperiodic
properties with G.

To satisfy the irreducible and aperiodic properties and thus obtain an unique
stationary distribution, an intuitive solution is to make all nodes in the graph
connected, and PageRank is exactly what we need. PageRank is an algorithm that
utilizes the concepts of Markov Chains [122] or more generally Perron-Frobenius
Theory [7] for non-negative matrices, applied in the context of internet-based
networks and linked information resources [34]. The key idea behind PageRank with
a "teleport probability" is that it allows for the possibility that a person browsing the
web may randomly "teleport" to a different page by following a link to an external
site. This idea of being able to randomly connect to arbitrary nodes can help us
deal with the problem of disconnected points in the graph. We define PageRank as

Definition 13. PageRank Matrix: Let N be a random row-normalized non-
negative matrix and let α ∈ (0, 1) be a constant. Denote further by R the matrix in
which all entries are 1/n. The PageRank matrix M is defined as

M = (1− α) ·N + α ·R, (4.1)

where α is the teleport probability [12].

We slightly modify the random walk to PageRank in the graph G for the which
adds a small chance of teleporting back to every node, and define the directed graph
with PageRank as follows:

Definition 14. Directed Graph with PageRank: Given an input directed graph
G, the directed graph with PageRank Gpr is generated by adding a small chance of
teleporting back from one node to other nodes. The transition matrix of Gpr is

61

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

defined as Ppr = (1− α)Prw + α
n
1n×n, where α ∈ (0, 1) and be controlled to keep the

probability α
n
in a small range.

Figure 4.1 shows the conversion from the original graph G to Gpr with PageRank.
It is easy to prove Ppr is irreducible and aperiodic, thus, it has a unique left eigenvector
πpr (also called Perron vector) which is strictly positive with eigenvalue 1 according
to Perron-Frobenius Theory [7].

The row-vector πpr corresponds to the stationary distribution of Ppr and we
have πpr(i) = ∑

i,i→j πpr(i)Ppr(i, j). That is, the probability of finding the walk at
vertex i is the sum of all the incoming probabilities from vertices j that have a
directed edges to i. Thus, πpr has analogy property with nodes degree matrix D̃u

in undirected graph that reflecting the connectivity between nodes [45]. Using this
property, we define the directed graph Laplacian Lpr using PageRank in symmetric
normalized format [24] as follows:

Lpr = I− 1
2

(
Π

1
2
prPprΠ

− 1
2

pr + Π−
1
2

pr PT
prΠ

1
2
pr

)
, (4.2)

where we use Πpr = 1
||πpr||1

Diag(πpr) to replace D̃u in the undirected graph Laplacian
[88]. In contrast to Ppr, this matrix is symmetric. Likewise, another work [113]
also employs this idea to solve directed graph problem. However, it is defined on
the strongly connected directed graphs, which is not universally applicable to any
directed graphs. Our method can easily generalize to it by α→ 0.

Adding a chance of teleporting back to every node guarantees πpr exists and
makes Lpr a Rn×n dense matrix at the same time. Using this Laplacian matrix leads
to greatly increase computational overhead of convolution operation and memory
requirement of O (n2) for training (see time usage in Section 4.4.2.2). To deal with
it, we propose a simplified sparse Laplacian using personlized PageRank.

4.2.2 Approximate Directed Graph Laplacian based on Per-
sonalized PageRank

It is not difficult to find that the generated Lpr by adding a chance of teleporting
back to every node has a lot of pseudo edges that should not exist. These dense
edges increase the computational overhead while helping the directed graph to
become strongly connected. To solve this issue, we reconsider the equation Ppr =

62

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

3

2 5

1
↵/n

<latexit sha1_base64="U3Z/KesUiS0kLyejv+0nEKtAro4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU02koN4KXjxWsB/ahjLZbtqlm03Y3Qgl9F948aCIV/+NN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsYX8/89iNTmsfyzkwS5kc4lDzkFI2VHnookhGSMyL75Ypbdecgf4mXkwrkaPTLn71BTNOISUMFat313MT4GSrDqWDTUi/VLEE6xiHrWioxYtrP5hdPyYlVBiSMlS1pyFz9OZFhpPUkCmxnhGakl72Z+J/XTU146WdcJqlhki4WhakgJiaz98mAK0aNmFiCVHF7K6EjVEiNDalkQ/CWX/5LWudVr1a9uq1V6vd5HEU4gmM4BQ8uoA430IAmUJDwBC/w6mjn2Xlz3hetBSefOYRfcD6+AYOIkEA=</latexit>

↵/n

<latexit sha1_base64="U3Z/KesUiS0kLyejv+0nEKtAro4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU02koN4KXjxWsB/ahjLZbtqlm03Y3Qgl9F948aCIV/+NN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsYX8/89iNTmsfyzkwS5kc4lDzkFI2VHnookhGSMyL75Ypbdecgf4mXkwrkaPTLn71BTNOISUMFat313MT4GSrDqWDTUi/VLEE6xiHrWioxYtrP5hdPyYlVBiSMlS1pyFz9OZFhpPUkCmxnhGakl72Z+J/XTU146WdcJqlhki4WhakgJiaz98mAK0aNmFiCVHF7K6EjVEiNDalkQ/CWX/5LWudVr1a9uq1V6vd5HEU4gmM4BQ8uoA430IAmUJDwBC/w6mjn2Xlz3hetBSefOYRfcD6+AYOIkEA=</latexit>

↵/n

<latexit sha1_base64="U3Z/KesUiS0kLyejv+0nEKtAro4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU02koN4KXjxWsB/ahjLZbtqlm03Y3Qgl9F948aCIV/+NN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsYX8/89iNTmsfyzkwS5kc4lDzkFI2VHnookhGSMyL75Ypbdecgf4mXkwrkaPTLn71BTNOISUMFat313MT4GSrDqWDTUi/VLEE6xiHrWioxYtrP5hdPyYlVBiSMlS1pyFz9OZFhpPUkCmxnhGakl72Z+J/XTU146WdcJqlhki4WhakgJiaz98mAK0aNmFiCVHF7K6EjVEiNDalkQ/CWX/5LWudVr1a9uq1V6vd5HEU4gmM4BQ8uoA430IAmUJDwBC/w6mjn2Xlz3hetBSefOYRfcD6+AYOIkEA=</latexit>

↵/n

<latexit sha1_base64="U3Z/KesUiS0kLyejv+0nEKtAro4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU02koN4KXjxWsB/ahjLZbtqlm03Y3Qgl9F948aCIV/+NN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsYX8/89iNTmsfyzkwS5kc4lDzkFI2VHnookhGSMyL75Ypbdecgf4mXkwrkaPTLn71BTNOISUMFat313MT4GSrDqWDTUi/VLEE6xiHrWioxYtrP5hdPyYlVBiSMlS1pyFz9OZFhpPUkCmxnhGakl72Z+J/XTU146WdcJqlhki4WhakgJiaz98mAK0aNmFiCVHF7K6EjVEiNDalkQ/CWX/5LWudVr1a9uq1V6vd5HEU4gmM4BQ8uoA430IAmUJDwBC/w6mjn2Xlz3hetBSefOYRfcD6+AYOIkEA=</latexit>

3

2 5

1 3

2 5

1
↵

<latexit sha1_base64="TOgNagnE7eXG6lK/DAu33ZlozF8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQb0VvHisYD+gDWWy3bRrN5uwuxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LBzNNmB/hSPKQUzRWavdRJGMclCtu1V2ArBMvJxXI0RyUv/rDmKYRk4YK1LrnuYnxM1SGU8FmpX6qWYJ0giPWs1RixLSfLa6dkQurDEkYK1vSkIX6eyLDSOtpFNjOCM1Yr3pz8T+vl5rw2s+4TFLDJF0uClNBTEzmr5MhV4waMbUEqeL2VkLHqJAaG1DJhuCtvrxO2rWqV6/e3NcrjVoeRxHO4BwuwYMraMAdNKEFFB7hGV7hzYmdF+fd+Vi2Fpx85hT+wPn8AYqRjxQ=</latexit>

⇠

<latexit sha1_base64="r7EKEev7Gvuw3iUQEaid+16eTEE=">AAAB6nicbZDLSgMxFIbPeK21atWlIMEiuCozRVB3BTcuW7QXaIeSSTNtaJIZkoxYhi5dunGhiFsfos/hzmfwJUwvC239IfDx/+eQc04Qc6aN6345K6tr6xubma3sdm5ndy+/f1DXUaIIrZGIR6oZYE05k7RmmOG0GSuKRcBpIxhcT/LGPVWaRfLODGPqC9yTLGQEG2vdth9YJ19wi+5UaBm8ORTKuXH1+/F4XOnkP9vdiCSCSkM41rrlubHxU6wMI5yOsu1E0xiTAe7RlkWJBdV+Oh11hE6t00VhpOyTBk3d3x0pFloPRWArBTZ9vZhNzP+yVmLCSz9lMk4MlWT2UZhwZCI02Rt1maLE8KEFTBSzsyLSxwoTY6+TtUfwFldehnqp6J0Xr6peoVyCmTJwBCdwBh5cQBluoAI1INCDJ3iBV4c7z86b8z4rXXHmPYfwR87HDzKUkWk=</latexit>

↵

<latexit sha1_base64="TOgNagnE7eXG6lK/DAu33ZlozF8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQb0VvHisYD+gDWWy3bRrN5uwuxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LBzNNmB/hSPKQUzRWavdRJGMclCtu1V2ArBMvJxXI0RyUv/rDmKYRk4YK1LrnuYnxM1SGU8FmpX6qWYJ0giPWs1RixLSfLa6dkQurDEkYK1vSkIX6eyLDSOtpFNjOCM1Yr3pz8T+vl5rw2s+4TFLDJF0uClNBTEzmr5MhV4waMbUEqeL2VkLHqJAaG1DJhuCtvrxO2rWqV6/e3NcrjVoeRxHO4BwuwYMraMAdNKEFFB7hGV7hzYmdF+fd+Vi2Fpx85hT+wPn8AYqRjxQ=</latexit>

↵

<latexit sha1_base64="TOgNagnE7eXG6lK/DAu33ZlozF8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQb0VvHisYD+gDWWy3bRrN5uwuxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LBzNNmB/hSPKQUzRWavdRJGMclCtu1V2ArBMvJxXI0RyUv/rDmKYRk4YK1LrnuYnxM1SGU8FmpX6qWYJ0giPWs1RixLSfLa6dkQurDEkYK1vSkIX6eyLDSOtpFNjOCM1Yr3pz8T+vl5rw2s+4TFLDJF0uClNBTEzmr5MhV4waMbUEqeL2VkLHqJAaG1DJhuCtvrxO2rWqV6/e3NcrjVoeRxHO4BwuwYMraMAdNKEFFB7hGV7hzYmdF+fd+Vi2Fpx85hT+wPn8AYqRjxQ=</latexit>

↵

<latexit sha1_base64="TOgNagnE7eXG6lK/DAu33ZlozF8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQb0VvHisYD+gDWWy3bRrN5uwuxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LBzNNmB/hSPKQUzRWavdRJGMclCtu1V2ArBMvJxXI0RyUv/rDmKYRk4YK1LrnuYnxM1SGU8FmpX6qWYJ0giPWs1RixLSfLa6dkQurDEkYK1vSkIX6eyLDSOtpFNjOCM1Yr3pz8T+vl5rw2s+4TFLDJF0uClNBTEzmr5MhV4waMbUEqeL2VkLHqJAaG1DJhuCtvrxO2rWqV6/e3NcrjVoeRxHO4BwuwYMraMAdNKEFFB7hGV7hzYmdF+fd+Vi2Fpx85hT+wPn8AYqRjxQ=</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

self-loop

<latexit sha1_base64="J71xS/wIFqCGxL95clVLnN2AM4E=">AAAB+XicbVDLSgMxFM3UV62vUZeKBIvgxjIjgrorunHZgn1AO5RMmmlDM5MhuVMsQ5f+hRsXirh10+9w5zf4E6aPhbYeuHA4597k3uPHgmtwnC8rs7S8srqWXc9tbG5t79i7e1UtE0VZhUohVd0nmgkesQpwEKweK0ZCX7Ca37sd+7U+U5rL6B4GMfNC0ol4wCkBI7VsuwnsAVLzQHAmpIyHLTvvFJwJ8CJxZyRfPByVvx+PRqWW/dlsS5qELAIqiNYN14nBS4kCTgUb5pqJZjGhPdJhDUMjEjLtpZPNh/jEKG0cSGUqAjxRf0+kJNR6EPqmMyTQ1fPeWPzPayQQXHkpj+IEWESnHwWJwCDxOAbc5opREANDCFXc7IpplyhCwYSVMyG48ycvkup5wb0oXJfdfPEGTZFFB+gYnSIXXaIiukMlVEEU9dETekGvVmo9W2/W+7Q1Y81m9tEfWB8/D/OXqQ==</latexit>

PageRank personalized PageRank

Add teleport probability Add auxiliary node ⇠

<latexit sha1_base64="r7EKEev7Gvuw3iUQEaid+16eTEE=">AAAB6nicbZDLSgMxFIbPeK21atWlIMEiuCozRVB3BTcuW7QXaIeSSTNtaJIZkoxYhi5dunGhiFsfos/hzmfwJUwvC239IfDx/+eQc04Qc6aN6345K6tr6xubma3sdm5ndy+/f1DXUaIIrZGIR6oZYE05k7RmmOG0GSuKRcBpIxhcT/LGPVWaRfLODGPqC9yTLGQEG2vdth9YJ19wi+5UaBm8ORTKuXH1+/F4XOnkP9vdiCSCSkM41rrlubHxU6wMI5yOsu1E0xiTAe7RlkWJBdV+Oh11hE6t00VhpOyTBk3d3x0pFloPRWArBTZ9vZhNzP+yVmLCSz9lMk4MlWT2UZhwZCI02Rt1maLE8KEFTBSzsyLSxwoTY6+TtUfwFldehnqp6J0Xr6peoVyCmTJwBCdwBh5cQBluoAI1INCDJ3iBV4c7z86b8z4rXXHmPYfwR87HDzKUkWk=</latexit>

<latexit sha1_base64="/Q1+FwUDa+aFFn0aFl/qjLQvu+k=">AAACAnicbVC7SgNBFL0bXzG+opY2i0GwCruiaBm00DKCiYHNEmYns8mQeSwzs0JY0vkLttrbia0/YuuXOJtsYRIPDBzOuZd75kQJo9p43rdTWlldW98ob1a2tnd296r7B20tU4VJC0smVSdCmjAqSMtQw0gnUQTxiJHHaHST+49PRGkqxYMZJyTkaCBoTDEyVgq6HJkhRiy7nfSqNa/uTeEuE78gNSjQ7FV/un2JU06EwQxpHfheYsIMKUMxI5NKN9UkQXiEBiSwVCBOdJhNI0/cE6v03Vgq+4Rxp+rfjQxxrcc8spN5RL3o5eJ/XpCa+CrMqEhSQwSeHYpT5hrp5v93+1QRbNjYEoQVtVldPEQKYWNbmrsS8UnFluIvVrBM2md1/6Lu3Z/XGtdFPWU4gmM4BR8uoQF30IQWYJDwAq/w5jw7786H8zkbLTnFziHMwfn6Bel6mAc=</latexit>G
Original Graph Graph with Personalized PageRankGraph with PageRank

<latexit sha1_base64="QOLFOTWcFK9Tdy7K/74gWaIzgfU=">AAACCXicbVDLSsNAFL2pr1pfUZduBovgqiSi6LLoQpcV7APaECbTaTt0Jgkzk0IJ+QJ/wa3u3Ylbv8KtX+KkzcK2HrhwOOde7uEEMWdKO863VVpb39jcKm9Xdnb39g/sw6OWihJJaJNEPJKdACvKWUibmmlOO7GkWASctoPxXe63J1QqFoVPehpTT+BhyAaMYG0k37Z7AusRwTy9z/w0lplvV52aMwNaJW5BqlCg4ds/vX5EEkFDTThWqus6sfZSLDUjnGaVXqJojMkYD2nX0BALqrx0ljxDZ0bpo0EkzYQazdS/FykWSk1FYDbznGrZy8X/vG6iBzdeysI40TQk80eDhCMdobwG1GeSEs2nhmAimcmKyAhLTLQpa+FLILKKKcVdrmCVtC5q7lXNebys1m+LespwAqdwDi5cQx0eoAFNIDCBF3iFN+vZerc+rM/5askqbo5hAdbXL7lBmqM=</latexit>Gpr
<latexit sha1_base64="9AtHAyzQsvSvMnVJMTGIn3eAWCI=">AAACCnicbVDLSgMxFM3UV62vqS7dBIvgqsyIosuCC7usYFuhHYZMmmlDk0xIMkoZ5g/8Bbe6dydu/Qm3folpOwvbeuDC4Zx7uYcTSUa18bxvp7S2vrG5Vd6u7Ozu7R+41cOOTlKFSRsnLFEPEdKEUUHahhpGHqQiiEeMdKPxzdTvPhKlaSLuzUSSgKOhoDHFyFgpdKt9jswII5bd5mEmpcpDt+bVvRngKvELUgMFWqH70x8kOOVEGMyQ1j3fkybIkDIUM5JX+qkmEuExGpKepQJxooNsFj2Hp1YZwDhRdoSBM/XvRYa41hMe2c1pUL3sTcX/vF5q4usgo0Kmhgg8fxSnDJoETnuAA6oINmxiCcKK2qwQj5BC2Ni2Fr5EPK/YUvzlClZJ57zuX9a9u4tao1nUUwbH4AScAR9cgQZoghZoAwyewAt4BW/Os/PufDif89WSU9wcgQU4X7+Xrpsj</latexit>Gppr

Figure 4.1: Illustration of conversion from original graph with PageRank-based
methods. Note that for the sake of brevity, the connections are not fully shown.
Blue nodes 2, 3, 5 will also have the same pattern of connections like the red node 1.

(1 − α)Prw + α
n
1n×n of PageRank. Instead of viewing it as a combination of the

random walk Prw with a fully-connected teleport transition matrix, we can also view
it as a personalized PageRank matrix using all the nodes as teleports. Personalized
PageRank [78, 5, 130], as a variant of PageRank, focuses on the relative significance
of a target node with respect to a source node in a graph [170]. In other words,
different nodes can have personalization values connected to some subset of graph
nodes instead of all nodes. To retain properties while sparse the Laplacian, we
design an auxiliary node scheme using personalized PageRank.

4.2.2.1 Using Auxiliary Node as Teleport

Instead of using all the nodes of the graph itself as teleport points, our approach
is to artificially add an auxiliary point for passing connectivity. More precisely,
we introduce an auxiliary node ξ /∈ V as the personalized PageRank teleport set
T = {ξ} shown in the green node in Figure 4.1. In addition to this, we also add
a self-loop to each node. This widely used trick not only enables the graph to be
aperiodic, but also increases the probability of retaining its own features in message
passing [88]. Formally, we define the graph after taking the above two operations as:

Definition 15. Directed Graph with Personalized PageRank: Given an
input G, the directed graph with personalized PageRank Gppr is generated by two
steps: 1) adding a self-loop to each node; 2) adding an auxiliary node ξ /∈ V as
the personalized PageRank teleport set T = {ξ} and let each node in G has a α
possibility of linking to ξ. The transition matrix Pppr of the graph Gppr is defined as

63

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

follows:

Pppr =

(1− α)P̃ α1n×1

1
n
11×n 0

 , Pppr ∈ R(n+1)×(n+1), (4.3)

where P̃ = D̃−1Ã, Ã = A + In×n denotes the adjacency matrix with added self-loops
and D̃(i, i) = ∑

j Ã(i, j).

Adding self-loops makes Pppr aperiodic due to the greatest common divisor of
the lengths of its cycles is one. Meanwhile, each node in V has a α possibility of
linking to ξ and ξ has a 1/n possibility of teleporting back to every node in V,
which guarantees Pppr to be irreducible. Thus, Pppr has a unique left eigenvector
πppr ∈ Rn+1 which is strictly positive with eigenvalue 1.

4.2.2.2 Approximate Directed Graph Laplacian

Note that there are n + 1 nodes in the graph Gppr, including n original points
and an auxiliary node. Exploring the properties of the graph Gppr is not what we are
after, our target is finding the Laplacian matrix of P̃ for spectral analysis. However,
P̃ is not necessarily irreducible, which means the eigenvector π̃ ∈ Rn with the largest
eigenvalue of P̃ is not unique. Therefore, we need to find the approximate stationary
distribution of P̃.

As stated in the previous section, Pppr has a unique left eigenvector πppr ∈ Rn+1

which is strictly positive with eigenvalue 1. We can split πppr into two parts:
πppr = (πappr, πξ), where πappr ∈ Rn is the unique stationary distribution of the first
n points and πξ ∈ R1 is the unique stationary distribution of the auxiliary node
ξ. We find that πappr can converge to stationary distribution of P̃ according to
Theorem 2.
Theorem 2. For the first n nodes in the graph Gppr except the auxiliary node, we
have its unique left eigenvector πappr and adjacency matrix P̃ with added self-loops
defined in Defination 15. When teleport probability α→ 0, πapprP̃−πappr → 0. That
is, πappr converges to stationary distribution of P̃.

Proof. We start the proof from Equation πpprPppr = πppr, leading to

64

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

[
πappr πξ

]

(1− α)P̃ α1n×1

1
n
11×n 0

 =
[
πappr πξ

]
. (4.4)

Therefore,
(1− α)πapprP̃ + 1

n
πξ11×n = πappr

απappr1n×1 = πξ

, (4.5)

then,
(1− α)πapprP̃ + α

n
πappr = πappr (4.6)

and
πapprP̃− πappr = n− 1

n

α

1− απappr. (4.7)

Clearly, πappr is upper bounded by ||πappr||∞ 6 1. Therefore, when α → 0,
πapprP̃− πappr → 0. The proof is concluded.

Thus, we can control α in a small range and use the stationary distribution of
Pppr to approximate the stationary distribution of P̃. The Equation 4.2 can be
simplified to

Lappr = I− 1
2
(
Π̃

1
2 P̃Π̃−

1
2 + Π̃−

1
2 P̃T Π̃

1
2
)
≈ I− 1

2

(
Π

1
2
apprP̃Π−

1
2

appr + Π−
1
2

apprP̃TΠ
1
2
appr

)
,

(4.8)
where Π̃ = 1

||π̃||1
Diag(π̃) and Πappr = 1

||πappr||1
Diag(πappr). Note that Lappr retains

the graph’s sparsity of O (|E|).

4.2.2.3 Generalization of Approximate Directed Graph Laplacian

As presented in Theorem 2, we can obtain the approximate Laplacian matrix for
the directed graph when α tends to 0. In addition to this, we find that our method
can be generalized to other forms under different conditions shown in Theorem 3.
Theorem 3. Given an input graph G and its approximate directed graph Laplacian
matrix Lappr. When teleport probability α → 1, Πappr → 1

n
· In×n and Lappr →

I− 1
2(P̃ + P̃T). Specially, if G is undirected, then Lappr → I− D̃−1Ã.

Proof. From the Equation 4.5 above, we obtain

απappr1n×1 = πξ, (4.9)

65

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

and πppr = (πappr, πξ) is the stationary distribution of Pppr, thus, πappr1n×1 = 1− πξ
and

πξ = α

1 + α
. (4.10)

Then, we have
(1− α)πapprP̃ + 1

n

α

1 + α
11×n = πappr. (4.11)

Therefore,

πappr
||πappr||1

=
(1− α)πapprP̃ + 1

n
α

1+α11×n

1− πξ

=
(1− α)πapprP̃ + 1

n
α

1+α11×n

1
1+α

= (1− α)(1 + α)πapprP̃ + 1
n
α11×n

. (4.12)

Since πappr is stationary distribution and P̃ is transition matrix, ||πapprP̃||∞ 6

||πappr||∞||P̃||∞ 6 1. It is easy to show when α → 1, πappr
||πappr||1

→ 1
n
11×n and

Πappr = 1
||πappr||1

Diag(πappr)→ 1
n
· In×n. Besides, for Lappr as follows

Lappr ≈ I− 1
2

(
Π

1
2
apprP̃Π−

1
2

appr + Π−
1
2

apprP̃TΠ
1
2
appr

)
, (4.13)

when α→ 1,

Lappr → I− 1
2

(
1√
n

P̃
√
n+ 1√

n
P̃T
√
n

)

→ I− 1
2
(
P̃ + P̃T

) (4.14)

Meanwhile, in the case that G is undirected, P̃ is symmetric and P̃ = P̃T = D̃−1Ã,
Lappr coverages to:

Lappr → I− D̃−1Ã. (4.15)

The proof is concluded.

We show in Theorem 3 and Equation 4.16 that two common used undirected
Laplacian matrices are special cases of our method under certain conditions: the
trivial-symmetric form I− 1

2(P̃ + P̃T) mentioned in Section 4.2.1 and random-walk
normalized form I− D̃−1Ã [25].

66

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Lappr
α→1−−→ I− 1

2
(
P̃ + P̃T

)
︸ ︷︷ ︸
trivial-symmetric form

G is undirected−−−−−−−−→
P̃=P̃T=D̃−1Ã

I− D̃−1Ã︸ ︷︷ ︸
random walk form

. (4.16)

When α tends to 1, the form of our method is closer to the form of undirected graph
Laplacian. That is to say α can control the degree of conversion from a directed
form to an undirected form. The smaller α retains the more directed properties,
and vice versa.

4.2.3 Directed Graph Convolution

As we have defined the directed graph Laplacian in Equation 4.8 and it is
symmetric, we can follow the spectral analysis in GCN [88] to derive the definition
of the directed graph convolution as:

Z = 1
2

(
Π

1
2
apprP̃Π−

1
2

appr + Π−
1
2

apprP̃TΠ
1
2
appr

)
XΘ, (4.17)

where Z ∈ Rn×d is the convolved result with d output dimension, X ∈ Rn×c is
node feature matrix and Θ ∈ Rc×d is trainable weight. Note that we carry out row
normalization to the input weighted adjacency matrix. This propagation scheme
has complexity O(|E|cd) which is same with GCN [88], as directed graph Laplacian
is sparse and can be calculated during preprocessing. The pseudocode of directed
graph convolution is shown in Algorithm 3.

Algorithm 3: Directed graph convolution procedure
Input: Adjacency matrix: A, features matrix: X, teleport probability α,

learnable weights: Θ
Output: Convolution result Z

1: Initialize Θ;
2: Ã← A + In×n ;
3: P̃← D̃−1Ã ;
4: Pppr ← AddAuxNode(P̃, α);
5: πppr ← LeftEVD(Pppr);
6: πappr ← πppr(1 : n);
7: Πappr ← 1

||πappr||1
Diag(πappr);

8: Z← 1
2

(
Π

1
2
apprP̃Π−

1
2

appr + Π−
1
2

apprP̃TΠ
1
2
appr

)
XΘ;

9: return Z

67

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

4.3 Directed Graph Inception Network
In this section, first, we introduce kth-order Proximity as scalable receptive field

and then we present DiGCN, a multi-scale inception network, to learn from features
of different size in directed graphs.

4.3.1 Scalable Receptive Field based on kth-order Proximity

We start by explaining the feature spreading ways in GCNs. Xu et al. [201] have
shown that the information of node i spreads to node j in an analogous random walk
manner, which means path is the way of feature transmission and the size of receptive
field is determined by the length of the path in a graph. However, in directed graph,
long paths only exist between a few points and are often not bidirectional, which is
not conducive to obtaining global features. Meanwhile, different communities have
various node degrees of in and out, which may cause unbalanced receptive fields
(paths) in directed graphs. To solve this problem, we propose kth-order Proximity in
directed graphs which not only obtains the node’s features from its directly adjacent
nodes, but also extract the hidden information from kth-order neighbor nodes. That
is, if two nodes share common neighbors, they tend to be similar.

0th � order proximity

<latexit sha1_base64="4pdbjQxORJG7+MJJONuSGI+IETk=">AAACAXicbVBNS8NAEN34WetX1IvgZbEKXiyJFNRbwYvHCvYD2lg2m227dJMNuxMxhHrxr3jxoIhX/4U3/43bNgdtfTDweG+GmXl+LLgGx/m2FhaXlldWC2vF9Y3NrW17Z7ehZaIoq1MppGr5RDPBI1YHDoK1YsVI6AvW9IdXY795z5TmMrqFNGZeSPoR73FKwEhde9+5y2AwOpUqYAp3cKzkAw85pF275JSdCfA8cXNSQjlqXfurE0iahCwCKojWbdeJwcuIAk4FGxU7iWYxoUPSZ21DIxIy7WWTD0b42CgB7kllKgI8UX9PZCTUOg190xkSGOhZbyz+57UT6F14GY/iBFhEp4t6icAg8TgOHHDFKIjUEEIVN7diOiCKUDChFU0I7uzL86RxVnYr5cubSql6lMdRQAfoEJ0gF52jKrpGNVRHFD2iZ/SK3qwn68V6tz6mrQtWPrOH/sD6/AFc5ZbF</latexit>

1st � order proximity

<latexit sha1_base64="TlDgjFXfdNMEUaTQovkZwbbHsok=">AAACAXicbVBNS8NAEN34WetX1IvgZbEKXiyJFNRbwYvHCvYD2lg2m027dJMNuxOxhHrxr3jxoIhX/4U3/43bNgdtfTDweG+GmXl+IrgGx/m2FhaXlldWC2vF9Y3NrW17Z7ehZaooq1MppGr5RDPBY1YHDoK1EsVI5AvW9AdXY795z5TmMr6FYcK8iPRiHnJKwEhde9+9yzSMTqUKmMIdnCj5wCMOw65dcsrOBHieuDkpoRy1rv3VCSRNIxYDFUTrtusk4GVEAaeCjYqdVLOE0AHpsbahMYmY9rLJByN8bJQAh1KZigFP1N8TGYm0Hka+6YwI9PWsNxb/89ophBdexuMkBRbT6aIwFRgkHseBA64YBTE0hFDFza2Y9okiFExoRROCO/vyPGmcld1K+fKmUqoe5XEU0AE6RCfIReeoiq5RDdURRY/oGb2iN+vJerHerY9p64KVz+yhP7A+fwBv/JbR</latexit>

2nd � order proximity

<latexit sha1_base64="LENgf/MmbKsKkqbQPPYpG3xbMnY=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAV3FiSUlB3BTcuK9gHtLFMJpN26GQmzEzEEOrGX3HjQhG3/oU7/8Zpm4W2HrhwOOde7r3HjxlV2nG+rcLS8srqWnG9tLG5tb1j7+61lEgkJk0smJAdHynCKCdNTTUjnVgSFPmMtP3R1cRv3xOpqOC3Oo2JF6EBpyHFSBupbx9U7zIejM+EDIiEPRhL8UAjqtO+XXYqzhRwkbg5KYMcjb791QsETiLCNWZIqa7rxNrLkNQUMzIu9RJFYoRHaEC6hnIUEeVl0w/G8MQoAQyFNMU1nKq/JzIUKZVGvumMkB6qeW8i/ud1Ex1eeBnlcaIJx7NFYcKgFnASBwyoJFiz1BCEJTW3QjxEEmFtQiuZENz5lxdJq1pxa5XLm1q5fpzHUQSH4AicAhecgzq4Bg3QBBg8gmfwCt6sJ+vFerc+Zq0FK5/ZB39gff4AUC+WvQ==</latexit>

kth � order proximity

<latexit sha1_base64="/qA5Wwep498OmmprhJaK3qYUai8=">AAACAXicbVBNS8NAEN34WetX1IvgZbEKXiyJFNRbwYvHCvYD2lg2m227dJMNuxMxhHrxr3jxoIhX/4U3/43bNgdtfTDweG+GmXl+LLgGx/m2FhaXlldWC2vF9Y3NrW17Z7ehZaIoq1MppGr5RDPBI1YHDoK1YsVI6AvW9IdXY795z5TmMrqFNGZeSPoR73FKwEhde394l8FgdCpVwBTu4FjJBx5ySLt2ySk7E+B54uakhHLUuvZXJ5A0CVkEVBCt264Tg5cRBZwKNip2Es1iQoekz9qGRiRk2ssmH4zwsVEC3JPKVAR4ov6eyEiodRr6pjMkMNCz3lj8z2sn0LvwMh7FCbCIThf1EoFB4nEcOOCKURCpIYQqbm7FdEAUoWBCK5oQ3NmX50njrOxWypc3lVL1KI+jgA7QITpBLjpHVXSNaqiOKHpEz+gVvVlP1ov1bn1MWxesfGYP/YH1+QO7npcA</latexit>

ve

<latexit sha1_base64="i1lhjIwLa9WYs7TdOFKTk0rJwLM=">AAAB63icbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFewHtKFsttN26e4m7G4KJfQvePGgiFf/kDf/jUmbg7Y+GHi8N8PMvCAS3FjX/XYKG5tb2zvF3dLe/sHhUfn4pGXCWDNsslCEuhNQg4IrbFpuBXYijVQGAtvB5D7z21PUhofqyc4i9CUdKT7kjNpMmvax1C9X3Kq7AFknXk4qkKPRL3/1BiGLJSrLBDWm67mR9ROqLWcC56VebDCibEJH2E2pohKNnyxunZPLVBmQYajTUpYs1N8TCZXGzGSQdkpqx2bVy8T/vG5sh7d+wlUUW1RsuWgYC2JDkj1OBlwjs2KWEso0T28lbEw1ZTaNJwvBW315nbSuq16tevdYq9TP8jiKcA4XcAUe3EAdHqABTWAwhmd4hTdHOi/Ou/OxbC04+cwp/IHz+QOD/I3I</latexit>

vi

<latexit sha1_base64="RgWgtjHNgwC3ZecktUFr2RR2HxI=">AAAB6nicbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFa0ttKFstpN26WYTdjeFEvoTvHhQxKu/yJv/xm2bg7Y+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+Qfnw6EnHqWLYZLGIVTugGgWX2DTcCGwnCmkUCGwFo9uZ3xqj0jyWj2aSoB/RgeQhZ9RY6WHc471yxa26c5BV4uWkAjkavfJXtx+zNEJpmKBadzw3MX5GleFM4LTUTTUmlI3oADuWShqh9rP5qVNybpU+CWNlSxoyV39PZDTSehIFtjOiZqiXvZn4n9dJTXjtZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsmG4C2/vEqeLqterXpzX6vUT/I4inAKZ3ABHlxBHe6gAU1gMIBneIU3RzgvzrvzsWgtOPnMMfyB8/kDVMKNuA==</latexit>

ve

<latexit sha1_base64="i1lhjIwLa9WYs7TdOFKTk0rJwLM=">AAAB63icbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFewHtKFsttN26e4m7G4KJfQvePGgiFf/kDf/jUmbg7Y+GHi8N8PMvCAS3FjX/XYKG5tb2zvF3dLe/sHhUfn4pGXCWDNsslCEuhNQg4IrbFpuBXYijVQGAtvB5D7z21PUhofqyc4i9CUdKT7kjNpMmvax1C9X3Kq7AFknXk4qkKPRL3/1BiGLJSrLBDWm67mR9ROqLWcC56VebDCibEJH2E2pohKNnyxunZPLVBmQYajTUpYs1N8TCZXGzGSQdkpqx2bVy8T/vG5sh7d+wlUUW1RsuWgYC2JDkj1OBlwjs2KWEso0T28lbEw1ZTaNJwvBW315nbSuq16tevdYq9TP8jiKcA4XcAUe3EAdHqABTWAwhmd4hTdHOi/Ou/OxbC04+cwp/IHz+QOD/I3I</latexit>

vi

<latexit sha1_base64="RgWgtjHNgwC3ZecktUFr2RR2HxI=">AAAB6nicbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFa0ttKFstpN26WYTdjeFEvoTvHhQxKu/yJv/xm2bg7Y+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+Qfnw6EnHqWLYZLGIVTugGgWX2DTcCGwnCmkUCGwFo9uZ3xqj0jyWj2aSoB/RgeQhZ9RY6WHc471yxa26c5BV4uWkAjkavfJXtx+zNEJpmKBadzw3MX5GleFM4LTUTTUmlI3oADuWShqh9rP5qVNybpU+CWNlSxoyV39PZDTSehIFtjOiZqiXvZn4n9dJTXjtZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsmG4C2/vEqeLqterXpzX6vUT/I4inAKZ3ABHlxBHe6gAU1gMIBneIU3RzgvzrvzsWgtOPnMMfyB8/kDVMKNuA==</latexit>

vi

<latexit sha1_base64="RgWgtjHNgwC3ZecktUFr2RR2HxI=">AAAB6nicbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFa0ttKFstpN26WYTdjeFEvoTvHhQxKu/yJv/xm2bg7Y+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+Qfnw6EnHqWLYZLGIVTugGgWX2DTcCGwnCmkUCGwFo9uZ3xqj0jyWj2aSoB/RgeQhZ9RY6WHc471yxa26c5BV4uWkAjkavfJXtx+zNEJpmKBadzw3MX5GleFM4LTUTTUmlI3oADuWShqh9rP5qVNybpU+CWNlSxoyV39PZDTSehIFtjOiZqiXvZn4n9dJTXjtZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsmG4C2/vEqeLqterXpzX6vUT/I4inAKZ3ABHlxBHe6gAU1gMIBneIU3RzgvzrvzsWgtOPnMMfyB8/kDVMKNuA==</latexit>

ve

<latexit sha1_base64="i1lhjIwLa9WYs7TdOFKTk0rJwLM=">AAAB63icbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFewHtKFsttN26e4m7G4KJfQvePGgiFf/kDf/jUmbg7Y+GHi8N8PMvCAS3FjX/XYKG5tb2zvF3dLe/sHhUfn4pGXCWDNsslCEuhNQg4IrbFpuBXYijVQGAtvB5D7z21PUhofqyc4i9CUdKT7kjNpMmvax1C9X3Kq7AFknXk4qkKPRL3/1BiGLJSrLBDWm67mR9ROqLWcC56VebDCibEJH2E2pohKNnyxunZPLVBmQYajTUpYs1N8TCZXGzGSQdkpqx2bVy8T/vG5sh7d+wlUUW1RsuWgYC2JDkj1OBlwjs2KWEso0T28lbEw1ZTaNJwvBW315nbSuq16tevdYq9TP8jiKcA4XcAUe3EAdHqABTWAwhmd4hTdHOi/Ou/OxbC04+cwp/IHz+QOD/I3I</latexit>

vi

<latexit sha1_base64="RgWgtjHNgwC3ZecktUFr2RR2HxI=">AAAB6nicbVBNS8NAEJ3Ur1q/ql4EL4tF8FQSKai3ghePFa0ttKFstpN26WYTdjeFEvoTvHhQxKu/yJv/xm2bg7Y+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+Qfnw6EnHqWLYZLGIVTugGgWX2DTcCGwnCmkUCGwFo9uZ3xqj0jyWj2aSoB/RgeQhZ9RY6WHc471yxa26c5BV4uWkAjkavfJXtx+zNEJpmKBadzw3MX5GleFM4LTUTTUmlI3oADuWShqh9rP5qVNybpU+CWNlSxoyV39PZDTSehIFtjOiZqiXvZn4n9dJTXjtZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsmG4C2/vEqeLqterXpzX6vUT/I4inAKZ3ABHlxBHe6gAU1gMIBneIU3RzgvzrvzsWgtOPnMMfyB8/kDVMKNuA==</latexit>

2 edges
k-1 edges

k-1 edges

Figure 4.2: Illustration of kth -order proximity.

68

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Definition 16. kth-order Proximity. Given a graph G = (V , E), for k > 2, if
∃ e ∈ V and a path between node i and j (i, j ∈ V) in this form: vi→ · · · →︸ ︷︷ ︸

k−1 edges

ve← · · · ←︸ ︷︷ ︸
k−1 edges

vj,

we define this path as kth-order meeting pathM(k)
i,j . Similarity, the kth-order diffu-

sion path Di,j(k) is vi← · · · ←︸ ︷︷ ︸
k−1 edges

ve→ · · · →︸ ︷︷ ︸
k−1 edges

vj. If there exist bothMi,j
(k) and Di,j(k)

between node i and j, we think they are kth-order proximity and e is their kth-order
common neighbor. Note that one node is 0th-order proximity with itself and 1st-order
proximity with its directly connected neighbors.

The schematic of kth -order proximity shows in Figure 4.2. For a directed graph G,
we use kth-order proximity to generate k receptive fields based on the input adjacency
matrix A. Multi-layer networks can be implemented by stacking Inception blocks.
Based on Definition 16, we build a kth-order proximity matrix to connect similar
nodes together.

Definition 17. kth-order Proximity Matrix. In order to model the kth-order
proximity, we define the kth-order proximity matrix P(k)(k ∈ Z) in the graph G:

P(k) =

I k = 0

D̃−1Ã k = 1
Intersect

(
(P(1))k−1(P(1)T)k−1

, (P(1)T)k−1(P(1))k−1
)
/2 k > 2

.

(4.18)
Ã is the adjacency matrix with self-loops of G and D̃ is corresponding diagonalized
degree matrix. Intersect(·) denotes the element-wise intersection of matrices that
only when the corresponding positions have both meeting and diffusion paths, the
sum operation is performed, otherwise, it is 0.

The kth-order proximity matrix P(k) is symmetric if k > 2 because of the
intersection operation. k represents distance between two similar nodes, that is, the
size of the receptive fields. We can get scalable receptive fields by setting different k.

4.3.2 Multi-scale Inception Network Structure

Based on the proposed kth-order proximity matrix, we define the multi-scale
directed graph convolution as:

69

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Z(k) =

XΘ(0) k = 0

1
2

(
Π(1)

1
2 P(1)Π(1)−

1
2 + Π(1)−

1
2 P(1)TΠ(1)

1
2

)
XΘ(1) k = 1

W(k)−
1
2 P(k)W(k)−

1
2 XΘ(k) k > 2

. (4.19)

Z(k) ∈ Rn×d are convolved results with d output dimension, X ∈ Rn×c is node
feature matrix, W(k) is diagonalized weight matrix of P(k) and Θ(k) ∈ Rc×d is
trainable weight. Note that when k = 1, Z(1) is calculated by directed graph
convolution with P(1) in Section 4.2.3 and Π(1) is the corresponding approximate
diagonalized eigenvector.

Inspired by the Inception module proposed in [155], we build the multi-scale
directed graph Inception network. We can compare P(k=0) to 1×1 convolution kernel
and treat Z(k=0) as a skip connection term carrying non-smoothed features. Moreover,
Z(k>1) is designed to encode multi-scale directed structure features. Finally, we use
fusion operation Γ to fusion multi-scale features together as an Inception block ZI :

ZI = σ(Γ(Z(0),Z(1), ...,Z(k))), (4.20)

where σ is activation function. Fusion function Γ can be various, such as normal-
ization, summation and concatenation. In practice, we use Γ to keep the feature
dimensions unchanged, that is keeping ZI ∈ Rn×d for stacking the same block.
The schematic of Inception block shows in Figure 4.3. We convolute the kth-order
proximity matrices with input feature matrix Z(l−1)

I and gain the output Z(l)
I after

fusion. We encapsulate this process as an Inception block shown in the Figure 4.3,
where l ∈ Z+ is the number of layers and the initial input Z(0)

I = X. The pseudocode
of DiGCN is shown in Algorithm 4.

�

<latexit sha1_base64="GoNPQrOJwIv3dGYRMkXVn0/Rwkk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQU9iVgHoLePEYwSRCsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3ziZ70MSChqKqm+6uKOHMWN//9kobm1vbO+Xdyt7+weFR9fika1SqCe0QxZV+jLChnEnascxy+phoikXEaS+a3uZ+74lqw5R8sLOEhgKPJYsZwdZJvYFhY4Erw2rNb/gLoHUSFKQGBdrD6tdgpEgqqLSEY2P6gZ/YMMPaMsLpvDJIDU0wmeIx7TsqsaAmzBbnztGFU0YoVtqVtGih/p7IsDBmJiLXKbCdmFUvF//z+qmNr8OMySS1VJLlojjlyCqU/45GTFNi+cwRTDRztyIywRoT6xLKQwhWX14n3ctG0Gzc3DdrrXoRRxnO4BzqEMAVtOAO2tABAlN4hld48xLvxXv3PpatJa+YOYU/8D5/AM7wjyk=</latexit>

�

<latexit sha1_base64="x1/snx4rxL2UUkZbxtDLF+u2Zlw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQb0FPOgxgnlAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVhDaJ4kp3ImwoZ5I2LbOcdhJNsYg4bUfjm5nffqLaMCUf7CShocBDyWJGsHVSq3eLhcD9csWv+XOgVRLkpAI5Gv3yV2+gSCqotIRjY7qBn9gww9oywum01EsNTTAZ4yHtOiqxoCbM5tdO0ZlTBihW2pW0aK7+nsiwMGYiItcpsB2ZZW8m/ud1UxtfhRmTSWqpJItFccqRVWj2OhowTYnlE0cw0czdisgIa0ysC6jkQgiWX14lrfNacFG7vr+o1Kt5HEU4gVOoQgCXUIc7aEATCDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AVH5juc=</latexit>

n

<latexit sha1_base64="LCdKWdrtm8HnvPndDOzTDVFzA14=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlphyUK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5V7Xb5lWlXs3jKMIZnEMVPLiGOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH0x+M5A==</latexit>

 Output

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

A 2 Rn⇥n

<latexit sha1_base64="buhMoar2gFbEhaFmmm22nJnqU1o=">AAACD3icbVBLS8NAEJ74rPUV9ehlsSg9lUQK6q3ixWMV+4Amls120y7dbMLuRigh/8CLf8WLB0W8evXmv3H7OGjrBwPffDPDzHxBwpnSjvNtLS2vrK6tFzaKm1vbO7v23n5TxakktEFiHst2gBXlTNCGZprTdiIpjgJOW8HwalxvPVCpWCzu9CihfoT7goWMYG2krn3iRVgPgjC7zJHHBJqmQXab32cm0yyiCom8a5ecijMBWiTujJRghnrX/vJ6MUkjKjThWKmO6yTaz7DUjHCaF71U0QSTIe7TjqECmz1+NvknR8dG6aEwliaERhP190SGI6VGUWA6x+eq+dpY/K/WSXV47mdMJKmmgkwXhSlHOkZjc1CPSUo0HxmCiWTmVkQGWGKijYVFY4I7//IiaZ5W3Grl4qZaqpVndhTgEI6gDC6cQQ2uoQ4NIPAIz/AKb9aT9WK9Wx/T1iVrNnMAf2B9/gAFAZyX</latexit>

Adjacency matrix

n

<latexit sha1_base64="LCdKWdrtm8HnvPndDOzTDVFzA14=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlphyUK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5V7Xb5lWlXs3jKMIZnEMVPLiGOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH0x+M5A==</latexit>

Input feature

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

Z
(l)
I

<latexit sha1_base64="Qex0pISlkL07uL6WT9FWy/l0RQo=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiVJCSSEHdFdzoroK9YBvDZDpph04uzEyEMmTnxldx40IRt76CO9/GScxCW38Y+PjPOcw5vxczKqRlfRmlhcWl5ZXyamVtfWNzy9ze6Ygo4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN7nI6t17wgWNwhs5jYkToFFIfYqR1JZr7g8CJMeer25TV+WMEVNXaXqnauwodc2qVbdywXmwC6iCQi3X/BwMI5wEJJSYISH6thVLRyEuKWYkrQwSQWKEJ2hE+hpDFBDhqPyOFB5qZwj9iOsXSpi7vycUCoSYBp7uzDYVs7XM/K/WT6R/5igaxokkIf75yE8YlBHMQoFDygmWbKoBYU71rhCPEUdY6ugqOgR79uR56JzU7Ub9/LpRbR4XcZTBHjgANWCDU9AEl6AF2gCDB/AEXsCr8Wg8G2/G+09ryShmdsEfGR/fvLeZzg==</latexit>

Z
(l�1)
I

<latexit sha1_base64="PKH3cS62WTFVKqZWLAAHHZ51QZ0=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQQUsiBXVXcKO7CvaBbQyT6aQdOpmEmYlQQnZu/BU3LhRx6y+482+ctFlo64ELh3Pu5d57vIhRqSzr2ygsLC4trxRXS2vrG5tb5vZOS4axwKSJQxaKjockYZSTpqKKkU4kCAo8Rtre6DLz2w9ESBryWzWOiBOgAac+xUhpyTX3ewFSQ89P7tL7pMJO7KPUnUgYseQ6dc2yVbUmgPPEzkkZ5Gi45levH+I4IFxhhqTs2laknAQJRTEjaakXSxIhPEID0tWUo4BIJ5n8kcJDrfShHwpdXMGJ+nsiQYGU48DTndmJctbLxP+8bqz8cyehPIoV4Xi6yI8ZVCHMQoF9KghWbKwJwoLqWyEeIoGw0tGVdAj27MvzpHVatWvVi5tauX6cx1EEe+AAVIANzkAdXIEGaAIMHsEzeAVvxpPxYrwbH9PWgpHP7II/MD5/AMaCmTQ=</latexit>

Figure 4.3: Illustration of Inception block of lth layer.
70

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

We notice that a recent work SIGN uses a similar Inception structure to handle
large scale graph learning [140]. Differently, they use SGC [187] as basic block which
is not applicable to directed graphs and concatenate these block of different size
together into a FC layer. However, concatenation is a kind of features fusion method,
and in some cases, the effect of concatenation is not as good as summation, we
illustrate this in Section 4.4.2.2.

Algorithm 4: DiGCN procedure
Input: Adjacency matrix: A, features matrix: X;
width of Inception block k, fusion function Γ;
activatation function: σ, teleport probability α ;
learnable weights: {Θ0,Θ1, ...,Θk}
Output: Convolution result ZI

1: Initialize {Θ0,Θ1, ...,Θk};
2: for i← 0 to k do
3: if i = 0 then
4: P(i) ← In×n;
5: else if i = 1 then
6: Ã← A + In×n, D̃← RowSum(Ã), P(i) ← D̃−1Ã;
7: else
8: P(i) ← Intersect((P(1))k−1(P(1)T)k−1

, (P(1)T)k−1(P(1))k−1)/2;
9: W(i) ← RowSum(P(i));

10: for j ← 0 to k do
11: if j = 0 then
12: Z(0) ← XΘ(0);
13: else if j = 1 then
14: Z(1) ← DirectedGraphConv(P(1), α);
15: else
16: Z(j) ←W(j)−

1
2 P(j)W(j)−

1
2 XΘ(j);

17: ZI ← σ(Γ(Z(0),Z(1), ...,Z(k)));
18: return ZI

Generalization to other Models. Our method using kth-order proximity to
improve the convolution receptive field has strong generalization ability. In most
spectral-based models, we can use our Inception block to replace the original layer
(see Table 4.1). Our Inception block can generalizate to other models only need to
modify some parameters.

71

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Table 4.1: Generalization of Inception block. Λ is Laplacian eigenvalue matrix
defined in ChebNet [28] and Au is the symmetric form of A.

Undir. Dir. Adj Scale Range Weights Fusion Method

ChebNet [28] X Λ [0, 1, .., k] Θ0, ...,Θk Sum
GCN [88] X Au 1 Θ None
SGC [187] X Au k Θ None
SIGN [140] X Au [0, 1, .., k] Θ0, ...,Θk Concate

Ours (DiGCN) X X A [0, 1, .., k] Θ0, ...,Θk Any Γ

Taking SGC [187] as an example, we can generalize our method to the SGC by
replacing the origin kth -power of adjacency matrix by Inception block. Experimental
results in Section 4.4.2.2 show that integrating our method can help improve accuracy.

Time and Space Complexity. For directed graph convolution defined in
Equation 4.17, we can use a sparse matrix to store Laplacians. And since we use
full batch training, the memory space cost for one adjacency matrix is O(|E|).

Figure 4.4: Number of edges per Inception block.

For the Inception block defined in Equation 4.20, due to the asymmetry of the
directed graphs mentioned in Section 4.3.1, long paths normally exist between a
few points and are not bidirectional. Thus, using kth-order proximity will get an
unbalanced receptive field and introduce computational complexity. Intersection
and union of meeting and diffusion paths both can handle the unbalancing problem.
We compare the number of edges per Inception block with different k on Cora-ML
[10] and CiteSeer [144] shown in Figure 4.4 and find that the edges in kth-order

72

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

matrix will not increase exponentially and intersection does help to reduce memory
consumption. Thus, the memory space cost for one Inception block in practical is
O(k|E|). However, the worst case does exist when the input graph is undirected
and strongly connected. Though it is unsuitable to our model, which mainly treats
reducible directed graphs, the worst space complexity is O(k|V|2).

We can calculate eigenvalue decomposition in the Equation 4.8 during the
preprocessing and store the results, therefore the computational complexity is
O(|V|3). At the same time, we use the sparse matrix multiplication. Thus, we can
obtain the complexity of convolution as O(k|E|cd).

4.4 Experiments
We conduct extensive experiments to evaluate the effectiveness of our model.

4.4.1 Experimental Settings

Here, we detail datasets, the baseline settings and model implementation in
experiments. We implement the DiGCN and all the baseline models using the python
library of PyTorch 2, Pytorch-Geometric [40] and DGL 0.3 3. All the experiments
are conducted on a server with one GPU (NVIDIA RTX-2080Ti), two CPUs (Intel
Xeon E5 * 2) and Ubuntu 18.04 System.

4.4.1.1 Datasets and Splitting

We use several directed graph datasets including citation networks: Cora-ML
[10] and CiteSeer [144], and Amazon Co-purchase Networks: Am-Photo and
Am-Computer [145]. The split of the datasets will greatly affect the performance
of the models [145, 90]. Especially for a single split, not only will it cause overfitting
problems during training, but it is also easy to get misleading results. Thus, in our
experiments, we randomly split the datasets and perform multiple experiments to
obtain stable and reliable results. For train/validation/test split, following the rules
in GCN [88], we choose 20 labels per class for training set, 500 labels for validation
set and rest for test set.

2https://pytorch.org
3https://www.dgl.ai

73

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

We use four open access datasets to test our method. Label rate is the fraction
of nodes in the training set per class. We use 20 labeled nodes per class to calculate
the label rate.

Table 4.2: Datasets Details

Datasets Nodes Edges Classes Features Label rate

Cora-ML 2995 8416 7 2879 4.67%
CiteSeer 3312 4715 6 3703 3.62%

Am-Photo 7650 143663 8 745 2.10%
Am-Computer 13752 287209 10 767 1.45%

4.4.1.2 Baselines

We compare our model to eight state-of-the-art models that can be divided into
four main categories: 1) spectral-based GNNs including ChebNet [28], GCN [88],
SGC [187] , APPNP [90] and InfoMax [166]; 2) spatial-based GNNs containing
GraphSage [54] and GAT [165]; 3) directed GNNs including DGCN [161] (we do not
use [113] because it only apply for strongly connected graph which needs cropping
the original dataset to meet its settings); 4) graph Inception having SIGN [140].

For all baseline models, we use their model structure in the original papers,
including layer number, activation function selection, normalization and regulariza-
tion selection, etc. It should be noted that GraphSage has three variants in the
original article using different aggregators: mean, meanpool, and maxpool. In
this chapter, we use mean as its aggregator since it performs best [145]. Detailed
hyper-parameter settings are shown in Table 4.3.

4.4.2 Semi-supervised Node Classification

Node classification is a common task used to measure graph models. In this
chapter, we adopt the task of Semi-supervised Node Classification in Directed Graphs
to verify the learning ability of models. Compared with the common experiments for
undirected graphs [88, 187, 180], the challenge is that the given adjacency matrix A
is asymmetric, which means message passing has its direction. Based on the method
proposed above, we build several models to deal with this problem.

74

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Ta
bl
e
4.
3:

T
he

hy
pe

r-
pa

ra
m
et
er
s
of

ba
se
lin

es
.

M
od

el
la
ye
rs

lr
we

ig
ht

de
ca
y

dr
op

ou
t

hi
dd

en
di
m
en
sio

n
O
th
er
s

C
he
bN

et
[2
8]

2
0.
01

5e
-4

0.
5

C
or

a-
M

l
&

C
it

eS
ee

r:
16

ot
he
rs
:6
4

nu
m
-h
op

=
2

G
C
N

[8
8]

2
0.
01

5e
-4

0.
5

64
-

SG
C

[1
87
]

1
0.
1

5e
-4

0.
5

-
po

we
r-
tim

es
=
2

A
PP

N
P

[9
0]

2
0.
01

5e
-4

0.
5

64
α

=
0.

1

In
fo
M
ax

[1
66
]

1
0.
00
1

5e
-4

0
20
48

m
ax

-L
R
-it
er
=
15
0

G
ra
ph

Sa
ge

[5
4]

2
0.
00
5

5e
-4

0.
6

C
or

a-
M

l
&

C
it

eS
ee

r:
16

ot
he
rs
:6
4

m
ea
n

G
AT

[1
65
]

2
0.
00
5

5e
-4

0.
6

C
or

a-
M

l
&

C
it

eS
ee

r:
8

ot
he
rs
:3
2

he
ad

s=
16

D
G
C
N

[1
61
]

2
0.
01

5e
-4

0.
5

64
co
nc
at
en
at
io
n

SI
G
N

[1
40
]

2
0.
1

5e
-4

0.
5

64
k

=
2

75

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

4.4.2.1 Implementation

In this section, we implement our model to solve directed graph semi-supervised
node classification task. More specifically, how to mine the similarity between node
class using adjacency matrix A when there is no graph structure information in
node feature matrix X. The task definition can be seen in Definition 8.

Figure 4.5: The schematic depiction of model using directed graph convolution.

For this task, we first build a two layer network model on directed graphs which
only use directed graph convolution. We schematically show the model in Figure
4.5 and use DiGCL to represent directed graph convolution layer. Model inputs are
the adjacent matrix A and features matrix X, while outputs are labels of predict
nodes Y. Our model can be written in the following form of forward propagation:

Â = 1
2

(
Π

1
2
apprP̃Π−

1
2

appr + Π−
1
2

apprP̃TΠ
1
2
appr

)
Y = softmax

(
Â(ReLU(ÂXΘ(0))Θ(1)

) . (4.21)

Moreover, we build the DiGCN model using kth-order proximity as an Inception
block, which can be written in the following form of forward propagation:

Z(l)
I = σ(Γ(Z(0),Z(1), ...,Z(k))(l−1))

YI = softmax
(
Z(l)
I

) , (4.22)

where l ∈ Z+ is the number of layers and (·)(l) represents the weights of lth layer.
The activation function σ and the fusion function Γ are chosen differently according
to the experiments in the chapter. We show the model in Figure 4.6, model inputs
are an adjacent matrix A and a features matrix X, while outputs are labels of
predict nodes YI .

We perform a grid search on the hyperparameters: lr in range [0.001, 0.1], weight
decay in range [1e-5, 1e-3] and dropout rate in range [0.3,0.8] and use all labeled

76

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Figure 4.6: The schematic depiction of DiGCN for semi-supervised learning.

examples to evaluate the cross-entropy error for semi-supervised node classification
task. The val accuracy on Cora-ML and Am-Photo with the number of layers
and hidden dimension are shown in the Figure 4.7(a,b) respectively. Detailed
hyper-parameter settings of out models are shown in Table 4.4.

(a) Cora-ML (b) Am-Photo

Figure 4.7: Val accuracy on Cora-ML and Am-Photo.

Table 4.4: The hyper-parameters of DiGCN model. "w/ pr" means directed graph
convolution using Lpr; "w/ appr" means directed graph convolution using Lappr;
"w/o IB" means using 1st-order proximity directed graph convolution only; "w/ IB"
means using Inception block.
Our models layers lr weight decay dropout hidden dim Others
w/pr w/o IB 2 0.05 1e-4 0.5 64 α = 0.1
w/appr w/o IB 2 0.05 1e-4 0.5 64 α = 0.1
w/appr w/ IB 3 0.01 5e-4 0.6 32 α = 0.1, k = 2

4.4.2.2 Experimental Results

Overall accuracy. The performance comparisons between our model and
baselines on four datasets are reported in Table 4.5. We train all models for a

77

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

maximum of 1000 epochs and early stop if the validation accuracy does not increase
for 200 consecutive epochs, then calculate mean test accuracy with STD in percent
(%) averaged over 20 random dataset splits with random weight initialization.

It can be seen easily that our methods achieves the state-of-the-art results on all
datasets. Notice that spectral-based models including ChebNet, GCN, SGC and
InfoMax, do not perform well on directed graph datasets compared to their good
performance in undirected graphs. This is mainly because these models have limited
ability to obtain features from the surroundings using asymmetric adjacency matrices.
However, APPNP is an exception. It allows features to randomly propagate with a
certain teleport probability, which breaks through the path limitation and achieves
good results in directed graphs. The spatial-based method and ours have similar
results, which shows that both methods have good suitability for directed graphs.
Moreover, DGCN performs well on the most datasets, however, it uses both in- &
out-degree proximity matrix to obtain structural features in directed graphs, which
leads to out of memory on Am-Computer. Meanwhile, SIGN uses SGC as the
basic module, thus, even if Inception method is used, SIGN does not perform well
in directed graphs (see analysis in Section 4.3.2).

Training time. With the same training settings, we measure the convergence
speed of models by average training time per run in second (s) in Table 4.5. Ap-
parently, our models have similar results. Lpr can only be applied to moderately
sized graphs, while Lappr scales to large graphs. Compared with the spectral-based
methods, the overall speed of our model without Inception block is similar to SGC
since the Laplacian is precomputed. On Am-Photo and Am-Computer with
large scales, our model is 30% faster on average than GCN. The accuracy of our
model improves significantly while the speed decreases after using Inception, which
is consistent with complexity analysis in Section 4.3.2.

Ablation study. We validate the effectiveness of the components and the
resulting ACC are shown in Table 4.5. Comparing model with Lappr and model
with Lpr, we find that the approximate method can not only achieve the similar
accuracy but also save training time and memory. Meanwhile, we find that the
combination of Lappr and Inception block brings significant improvement in accuracy.
This substantially validate that scalable receptive fields do help to learn features
from neighborhood.

78

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Ta
bl
e
4.
5:

O
ve
ra
ll
ac
cu
ra
cy

an
d
tr
ai
ni
ng

tim
e
of

no
de

cl
as
sifi

ca
tio

n
ta
sk
."w

/
pr
"m

ea
ns

us
in
g

L
p
r
;"
w
/
ap

pr
"

m
ea
ns

us
in
g

L
a
p
p
r
;"
w
/o

IB
"
m
ea
ns

us
in
g
di
re
ct
ed

gr
ap

h
co
nv

ol
ut
io
n
on

ly
;"
w
/
IB

"
m
ea
ns

us
in
g
In
ce
pt
io
n

bl
oc
k.

T
he

be
st

re
su
lts

ar
e
hi
gh

lig
ht
ed

w
ith

bo
ld

an
d
th
e
se
co
nd

is
hi
gh

lig
ht
ed

w
ith

un
de
rli
ne
.

M
od

el
C

or
a-

M
L

C
it

eS
ee

r
A

m
-P

ho
to

A
m

-C
om

pu
te

r
ac
c

tim
e

ac
c

tim
e

ac
c

tim
e

ac
c

tim
e

C
he
bN

et
[2
8]

64
.0

2
±

1.
5

7.
23

56
.4

6
±

1.
4

7.
45

80
.9

1
±

1.
0

10
.5
2

73
.2

5
±

0.
8

16
.9
6

G
C
N

[8
8]

53
.1

1
±

0.
8

4.
48

54
.3

6
±

0.
5

4.
80

53
.2

0
±

0.
4

4.
86

60
.5

0
±

1.
6

5.
04

SG
C

[1
87
]

51
.1

4
±

0.
6

1.
92

44
.0

7
±

3.
5

3.
58

71
.2

5
±

1.
3

2.
31

76
.1

7
±

0.
1

3.
68

A
PP

N
P

[9
0]

70
.0

7
±

1.
1

6.
84

65
.3

9
±

0.
9

6.
94

79
.3

7
±

0.
9

6.
72

63
.1

6
±

1.
4

6.
47

In
fo
M
ax

[1
66
]

58
.0

0
±

2.
4

4.
11

60
.5

1
±

1.
7

4.
85

74
.4

0
±

1.
2

31
.8
0

47
.3

2
±

0.
7

41
.9
6

G
ra
ph

Sa
ge

[5
4]

72
.0

6
±

0.
9

6.
22

63
.1

9
±

0.
7

6.
21

87
.5

7
±

0.
9

8.
52

79
.2

9
±

1.
3

14
.4
9

G
AT

[1
65
]

71
.9

1
±

0.
9

6.
02

63
.0

3
±

0.
6

6.
12

89
.1

0
±

0.
7

8.
83

79
.4

5
±

1.
5

14
.6
6

D
G
C
N

[1
61
]

75
.0

2
±

0.
5

6.
53

66
.0

0
±

0.
4

6.
84

83
.6

6
±

0.
8

36
.2
9

O
O
M

-
SI
G
N

[1
40
]

66
.4

7
±

0.
9

2.
81

60
.6

9
±

0.
4

2.
96

74
.1

3
±

1.
0

5.
33

69
.4

0
±

4.
8

4.
97

O
ur
s

w
/
pr

w
/o

IB
77
.1

1
±

0.
5

39
.1
3

64
.7

7
±

0.
6

47
.1
9

O
O
M
∗

-
O
O
M

-
w
/
ap

pr
w
/o

IB
77
.0

1
±

0.
4

2.
71

64
.9

2
±

0.
3

2.
69

88
.7

2
±

0.
3

2.
95

85
.5

5
±

0.
4

4.
23

w
/
ap

pr
w
/

IB
80
.2
8
±

0.
5

6.
38

66
.1
1
±

0.
7

6.
42

90
.0
2
±

0.
5

11
.7
7

85
.9
4
±

0.
5

26
.6
3

*
O
O
M

st
an

ds
fo
r
ou

t
of

m
em

or
y
(s
ee

effi
ci
en
cy

an
al
ys
is

in
Se
ct
io
n
4.
2.
1)

79

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Effect of teleport probability α. Figure 4.8(a) shows the effect of the hyperpa-
rameter α on the test accuracy and structural retention. Referring to the assumption
in Section 4.2.2, we define structural retention as S = KL(πappr, πapprP̃)−1, where
KL means KL divergence. We use S to measure how much directed structural
information retained after approximation. The smaller S, the less information
remain. According to Theorem 2 that α needs to be close to 0 to retain directed
graph structural information in Laplacian, however, we find that a higher α improves
accuracy slightly. In view of this, we choose α ∈ [0.05, 0.2] to balance structural
retention and accuracy. α should be adjusted for the different datasets [90], but in
order to maintain consistency, we take α = 0.1 in all experiments.

Training time at different graph scales. We report results for the mean
training time in millisecond (ms) per epoch for 200 epochs on simulated random
graphs using directed graph convolution. We construct a simple random graph
with N nodes and assign 2N edges uniformly at random. We take the node index
matrix as input feature matrix and give the same label for every node. Figure 4.8(b)
summarizes the results and shows that our model can handle about 10 million nodes
in one GPU (11GB).

0.00 0.25 0.50 0.75 1.00
0.5

0.6

0.7

0.8

0.9

A
C

C
 /

%

ACC
S

101

102

(a)

5.63 5.74 6.38 6.61
16.78

32.05

156.58

319.12

0

50

100

150

200

250

300

350

5K 10K 50K 100K500K 1M 5M 10M 50M

T
ra

in
in

g
ti

m
e

p
er

 e
p

oc
h

(m
s)

of nodes

O
O
M

(b)

Figure 4.8: (a) effect of α to ACC and structural retention S; (b) training time per
epoch on random directed graphs with different size.

80

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

0 1 2 3 4 5 6 7 8
k

30

40

50

60

70

80

90

V
al

 A
C

C
 /

%

Cora-ML
CiteSeer

(a)

1 2 3 4
Number of layers

40

50

60

70

80

90

100

A
C

C
 /

%

Concate+Linear
Sum+Linear
Concate+ReLU
Sum+ReLU

*

(b)

Cora-ML CiteSeer AM-Photo
Datasets Name

30

40

50

60

70

80

90

100

A
C

C
 /

%

SGC
SGC+DiGCN(k=1)
SGC+DiGCN(k=2)

(c)

Figure 4.9: (a) effects of model width k ; (b) fusion and activation functions on
Am-Photo in different layers (* stands for unable to converge); (c) generalization
to SGC using different k.

Depth and width of Inception block. How to balance the model depth and
width becomes a vital issue for Inception block. Figure 4.9(a) shows that for a single
layer model, the improvement in val accuracy is not significant for k > 2, which
means larger receptive field cannot obtain more effective information on small-scale
dataset Citeseer. Then, we keep k = 2 and carry out grid search on model depth
and choose layer=3. To intuitively compare the impact of depth under the same
receptive range, we choose GAT as baseline, which can obtain various range by
adjusting the head size without stacking layers. From Table 4.6, we can observe
that larger receptive fields help our model to perform better. It is consistent that
using a moderate number of layers is enough to effectively learn features.

Table 4.6: Results at various depths. Our model sets k = 2, and uses Lappr as
Laplacian and Sum as the fusion operation. "Range" means range of the receptive
field. The best results are highlighted with bold.

Model Range Setting Cora-ML CiteSeer Am-Photo Am-Computer

GAT 2 head=2 71.33± 1.4 63.33 ± 0.7 81.12 ± 1.5 75.12 ± 3.2
Ours layer=1 72.14 ± 1.0 62.89± 0.4 75.43± 0.5 64.17± 0.5
GAT 4 head=4 71.65± 1.0 63.30± 0.7 86.03± 1.0 77.57± 1.5
Ours layer=2 76.62 ± 0.5 63.98 ± 0.5 87.71 ± 0.9 82.36 ± 0.7
GAT 8 head=8 71.62± 0.8 63.17± 0.6 87.04± 1.0 78.22± 1.7
Ours layer=3 80.28 ± 0.5 66.11 ± 0.7 90.02 ± 0.5 85.94 ± 0.5
GAT 16 head=16 71.91± 0.9 63.03± 0.6 89.10± 0.7 79.45± 1.5
Ours layer=4 79.95 ± 0.8 64.00 ± 1.0 89.81 ± 0.9 83.36 ± 0.7

81

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Fusion operation and activation function. We show results in Figure 4.9(b)
and use Sum and Concate to represent Summation and Concatenation respectively.
We find that the choices of fusion and activation functions need to match the
complexity of the model. When the model is shallow, Concate performs better due
to more parameters. Sum achieves better results in deep model because it requires
fewer parameters, which helps prevent the model from overfitting. Since we use
kth-order proximate IB, linear combinations can achieve stable results on smaller
datasets. Using a non-linear activation function (ReLU) may result in models that
are too complex to learn features effectively.

Generalization to other model (SGC). To test the generalization ability of
Inception block, we use it to replace the origin layer in SGC [187]. The generalized
SGC model is denoted by SGC+DiGCN. Moreover, we test the case of k = 1 and
k = 2 to the generalized model and the results are shown in Figure 4.9(c). Obviously,
whether k = 1 or k = 2 our generalized model outperforms the original model on all
datasets, which shows that the multi-scale receptive field helps the model obtain
more surrounding information. Meanwhile, our method has good generalization
ability because of its simple structure that can be plugged into models easily.

4.4.3 Link Prediction

Link prediction is another common task used to measure the capability of graph
models. It is a task that predicting the existence of a edge between two nodes in a
graph. In this experiment, the dataset we use is directed graph datasets, i.e., the
edges to be predicted are directed.

4.4.3.1 Implementation

We implement the link prediction task using Pytorch-Geometric 4. The ratio of
positive validation edges is 0.05 and the ratio of positive test edges is 0.1. We do
not use early stop and obtain the mean and std that are calculated for 20 random
dataset splits and a maximum number of epochs of 500. The hyper-parameters of
two models are shown in Table 4.7.

4https://github.com/rusty1s/pytorch_geometric

82

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

Table 4.7: The hyper-parameters of link prediction models.

Models layers lr hidden dim output dim activation function Others
GCN 2 0.01 128 64 ReLU -
DiGCN 2 0.01 128 64 ReLU α = 0.1

4.4.3.2 Experimental Results

We use link prediction task to show that our model is able to obtain more
structural information. In this task, we split the edges of a directed graph into
positive and negative train/val/test edges and compare the results with GCN over 20
runs for a maximum of 500 epochs. Figure 4.10 shows that that our model (w/ appr
and w/o IB) outperforms GCN for link prediction on all datasets. This is mainly
because we take the edge direction into account when calculating Lappr, which allows
us to obtain more accurate structural information in directed graphs.

Cora-ML CiteSeer
Am-Photo

Am-Computer

Datasets

40

50

60

70

80

90

100

A
C

C
 /

%

GCN
DiGCN

Figure 4.10: Link prediction results on different datasets

83

CHAPTER 4. PAGERANK-BASED GRAPH CONVOLUTION

4.5 Summary
In this chapter, we present a novel Directed Graph Inception Convolutional

Networks (DiGCN), which can effectively learn directed graph representation. We
theoretically extend spectral-based graph convolution to directed graph and further
simplify it. Besides, we define kth-order proximity and design the directed graph
Inception networks to learn multi-scale features. This simple and scalable model can
not only learn directed graph structure, but also get hidden information through
kth-order proximity relationship. Finally, we use several tasks on various real-world
datasets to validate the effectiveness and generalization capability of our model. The
results show that our model outperforms several state-of-the-art methods.

84

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Chapter 5

Contrastive Graph Learning

In Chapter 3, we introduce DGCN, the first GCNs for learning from directed
graphs. In Chapter 4, we build DiGCN, which combines spectral-based graph
convolution with directed graph inception networks to learn multi-scale features and
hidden information through kth-order proximity relationships. DGCN and DiGCN
are trained end-to-end under supervision. This training scheme shows excellent
performance by virtue of enough labeled data. However, a large amount of graph data
exists in an untagged form. To utilize this vast amount of unused data, we propose
DiGCL, a self-supervised learning framework for directed graphs. Based on the
theoretical definition of directed graph Laplacian matrix proposed by DiGCN, DiGCL
introduces a data augmentation method that utilizes Laplacian perturbation and
curriculum learning to learn from contrastive views. The results show that DiGCL
can retain more structural features and provide adequate contrastive information,
outperforming other existing graph contrastive learning models.

5.1 Introduction
To make use of rich unlabeled data, several Graph Contrastive Learning (GCL)

[153, 207, 229, 136, 57, 227] works are proposed based on GNNs and Contrastive
Learning (CL) [19, 162, 58]. They utilize data augmentation methods to generate
contrastive views from the original graphs, then force views generated from the same
instance (node or graph) closer while views from different instances apart using
InfoNCE-like [123] objective function. However, current GCL methods encounter
some issues in processing directed graphs, mainly in data augmentation method and
contrastive learning framework.

85

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Firstly, most data augmentation methods used in GCL [207, 229, 228] do not
take the directed graph structure into account and may discard distinctive direction
information. For example, the idea of dropping nodes/edges [228, 207, 180] is
borrowed from random erasing used in images [220] , which overlooks the discrepancy
of nodes and edges in different graph structures. Moreover, by grasping contrastive
information through changing graph structure, part of the distinctive direction
information, e.g., irreversible time-series relationships, will inevitably be lost. The
message passing scheme will also be mislead, making it difficult for GNN-based
encoders to learn from directed graphs. There is a lack of data augmentation
methods that are specifically designed for directed graphs to retain the original
directed graph structure while providing enough contrastive information.

Besides, common contrastive learning frameworks are not optimized for directed
graphs, they can only learn from a limited number of contrastive views [207, 229, 57].
However, due to the complex structure of directed graphs, it is insufficient to use a
small number of contrastive views to fully understand their structural characteristics
[160]. Furthermore, since the contrastive views have to be determined before training,
it becomes another problem to select the ideal views for the downstream task during
pre-processing, about which we actually have no knowledge in advance [158, 195].
Hand-picking contrastive views also cause a decrease in generalization. Several works
[157, 203] try to obtain more information by increasing the number of contrastive
views. However, they still have to pre-define the views and trade off between the
number of views and the training difficulty.

To address these two issues, we first propose a directed graph data augmentation
method called Laplacian perturbation. Since the contrastive views are passed to
the encoder in the form of Laplacian matrix, a desirable data augmentation method
is to perturb the Laplacian matrix without changing the directed graph structure.
To achieve this, we adopt the approximate directed graph Laplacian [160] where a
teleport probability is introduced to control the degree of approximation. Thus, by
adding a perturbation term to this probability, we can simply augment the Laplacian
matrix without altering the directed graph structure. As it is time-consuming to
calculate the Laplacian matrix, we then speed it up using the power method [117].
In addition, from the theoretical analysis, we find that the Laplacian perturbation
is essentially a perturbation to the directed graph entropy. The perturbation term

86

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

essentially determines the magnitude of the entropy perturbation error, which affects
the magnitude of the contrastive information.

To learn the complete structural characteristics of directed graphs, we design a
directed graph contrastive learning framework to learn from contrastive views
generated by Laplacian perturbation. First, we introduce a generalized dynamic-
view contrastive objective which maximizes the sum of the mutual information
between the representations of all contrastive views. This objective allows the
contrastive views to change dynamically during training and motivates the encoder
to learn a generalized representation from all views provided by data augmentation.
However, this dynamic-view objective function is hard to optimize. Thus, we leverage
the multi-task curriculum learning strategy [134, 141, 51, 120] to divide multiple
contrastive views into sub-tasks with various difficulties and progressively learn from
easy-to-difficult sub-tasks. In this way, we can learn all views step-by-step to reach
the final objective. Moreover, learning from all contrastive views eliminates the need
to adjust the data augmentation parameters anymore.

We empirically show that our Directed Graph Contrastive Learning (DiGCL)
outperforms the competitive baselines in the settings of unsupervised and supervised
learning. Systematic analysis is also carried out to analyze the performance of
various augmentations on the mainstream benchmarks and the impact of different
pacing functions on the performance of directed graph contrastive learning.

5.2 Directed Graph Data Augmentation
In this section, we first design a directed graph data augmentation scheme named

Laplacian perturbation. As it is time-consuming to calculate the Laplacian matrix,
we then speed it up using the power method [117]. Finally, we analyze the proposed
data augmentation scheme theoretically. The data augmentation illustration is in
Figure 5.1 and the pseudocode is given in Algorithm 5.

5.2.1 Directed Graph Laplacian and its Approximation

Formally, let a directed graph G = (V , E), its adjacency matrix can be denoted as
A = {0, 1}n×n, where n = |V|. The nodes are described by the feature matrix X ∈
Rn×c, with the number of features c per node. Intuitively, the data augmentation can

87

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

be performed at the topological- and feature-level, operating on A and X, respectively
[207, 229]. The distinctive attribute of directed graphs is the directionality of the
edges, which leads us to focus on topological node-level data augmentation.

The augmented directed graph is fed to the GNN-based encoder in the form of
Laplacian matrix to learn the representation. Since G may contain isolated nodes or
could be formed into bipartite graph, it is not appropriate to trivially use directed
graph Laplacian [24]. To relax this constraint, we use its approximate form: the
approximate directed graph Laplacian matrix [160], which is defined as

Lappr(G, α) = I− 1
2

(
Π

1
2apprP̃Π−

1
2appr + Π−

1
2apprP̃TΠ

1
2appr

)
, (5.1)

where Πappr = 1
||πappr||1

Diag(πappr). The approximate eigenvector πappr is defined as

(1− α)πapprP̃ + 1
n

α

1 + α
11×n = πappr, (5.2)

where P̃ = D̃−1Ã, Ã = A+In×n denotes the transition matrix with added self-loops
and the diagonal degree matrix D̃(u, u) = ∑

v∈V Ã(u, v). Tong et al. [160] add
self-loops to the original directed graph to ensure G to be aperiodic and redefine
the transition matrix based on personalized PageRank with the teleport probability
α ∈ (0, 1) to guarantee the redefined matrix to be irreducible. Note that we follow
the [160] and set α = 0.1 in this chapter.

According to Equation 5.1, existing data augmentation methods [207, 229], e.g.,
node/edge dropping, subgraph sampling, need to obtain the contrastive information by
changing P̃. Their use of sampling-based methods inevitably corrupts the directed
graph structure and thus misleads the message passing in the GNN-based encoder. A
desirable data augmentation method on Lappr is to perturb πappr reasonably without
altering the directed graph structure P̃1.

5.2.2 Directed Graph Data Augmentation with Laplacian
Perturbation

From Equation 5.2, it is easy to find that the eigenvector πappr depends on the P̃
and α. In other words, we can shift the teleport probability α without changing the

1Note that adding self-loops to transform P into P̃ is a common trick [88, 187], and we ignore
the effect of this operation on the directed graph structure.

88

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

directed graph structure P̃, thus altering the eigenvector πappr and finally perturbing
the Laplacian matrix Lappr.

Definition 18. Laplacian perturbation. Given a directed graph G = (V , E) and
the teleport probability α, we define the Laplacian perturbation opertation Φ(·) on
the Lappr(P̃, α) as

Φ∆α(G, α) = Lappr(G, α + ∆α), (5.3)

where ∆α is a perturbation term that satisfies ∆α > 0 and α + ∆α ∈ (0, 1).

Through this operation, the directed graph structure and the sparsity of the
Laplacian matrix are maintained, which means there is no training burden to the
subsequent GNN-based encoder. However, using this operation for data augmenta-
tion is very time-consuming, since the time complexity of computing Equation 5.2
is O (n2). To deal with it, we design an accelerating algorithm for computing this
approximate eigenvector based on the power method [117].

We take advantage of the sparsity of the transition matrix P̃ to compute the
approximate eigenvector πappr and rewrite Equation 5.2 to the form of discrete-time
Markiv chain at time t as

πt+1
appr = (1− α)πtapprP̃ + 1

n

α

1 + α
11×n. (5.4)

As stated in Tong et al. [160], πtappr has a special property that πtappr1n×1 = 1
1+α .

We then multiply the last term of Equation 5.4 with (1 + α)πtappr1n×1 to

πt+1
appr = (1−α)πtapprP̃+ 1

n

α

1 + α
[(1+α)πtappr1n×1]11×n = (1−α)πtapprP̃+α

n
πtappr1n×n.

(5.5)
We can solve Equation 5.5 iteratively using the power method [117]. Therefore,
the complexity decreases to O (nk), where k is the number of iteration times. Due
to page limit, we do not discuss the number of iterations and convergence rate
here. Please refer to [105] for more details. We take k = 100 and the tolerance as
1e−6 throughout. It can be seen easily that for large-scale graphs, our method can
significantly improve the speed and makes it possible to do Laplacian perturbation
during the training, which is the basis for the framework proposed in Section 5.3.
In addition, we compare the running time of our fast Laplacian perturbation with
different data augmentation methods in Section 4.4.2.2.

89

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

3

2 4

1

⇠

<latexit sha1_base64="r7EKEev7Gvuw3iUQEaid+16eTEE=">AAAB6nicbZDLSgMxFIbPeK21atWlIMEiuCozRVB3BTcuW7QXaIeSSTNtaJIZkoxYhi5dunGhiFsfos/hzmfwJUwvC239IfDx/+eQc04Qc6aN6345K6tr6xubma3sdm5ndy+/f1DXUaIIrZGIR6oZYE05k7RmmOG0GSuKRcBpIxhcT/LGPVWaRfLODGPqC9yTLGQEG2vdth9YJ19wi+5UaBm8ORTKuXH1+/F4XOnkP9vdiCSCSkM41rrlubHxU6wMI5yOsu1E0xiTAe7RlkWJBdV+Oh11hE6t00VhpOyTBk3d3x0pFloPRWArBTZ9vZhNzP+yVmLCSz9lMk4MlWT2UZhwZCI02Rt1maLE8KEFTBSzsyLSxwoTY6+TtUfwFldehnqp6J0Xr6peoVyCmTJwBCdwBh5cQBluoAI1INCDJ3iBV4c7z86b8z4rXXHmPYfwR87HDzKUkWk=</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

3

2 4

1 <latexit sha1_base64="Qfj3BmA2V2/eQdPgQZ2zUPV8ZKw=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0oWgZtLCOYD0iOMLfZS9bs3h27e0I4gn/BVns7sfW32PpL3CRXmMQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOg4VZTVaSxi1QpQM8EjVjfcCNZKFEMZCNYMhrcTv/nElOZx9GBGCfMl9iMecorGSo0OimSA3VLZrbhTkGXi5aQMOWrd0k+nF9NUsshQgVq3PTcxfobKcCrYuNhJNUuQDrHP2pZGKJn2s+m1Y3JqlR4JY2UrMmSq/p3IUGo9koHtlGgGetGbiP957dSE137GoyQ1LKKzRWEqiInJ5HXS44pRI0aWIFXc3kroABVSYwOa2xLIcdGG4i1GsEwa5xXvsuLeX5SrN3k8BTiGEzgDD66gCndQgzpQeIQXeIU359l5dz6cz1nripPPHMEcnK9f2g+Vwg==</latexit>↵ <latexit sha1_base64="Qfj3BmA2V2/eQdPgQZ2zUPV8ZKw=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0oWgZtLCOYD0iOMLfZS9bs3h27e0I4gn/BVns7sfW32PpL3CRXmMQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOg4VZTVaSxi1QpQM8EjVjfcCNZKFEMZCNYMhrcTv/nElOZx9GBGCfMl9iMecorGSo0OimSA3VLZrbhTkGXi5aQMOWrd0k+nF9NUsshQgVq3PTcxfobKcCrYuNhJNUuQDrHP2pZGKJn2s+m1Y3JqlR4JY2UrMmSq/p3IUGo9koHtlGgGetGbiP957dSE137GoyQ1LKKzRWEqiInJ5HXS44pRI0aWIFXc3kroABVSYwOa2xLIcdGG4i1GsEwa5xXvsuLeX5SrN3k8BTiGEzgDD66gCndQgzpQeIQXeIU359l5dz6cz1nripPPHMEcnK9f2g+Vwg==</latexit>↵

<latexit sha1_base64="Qfj3BmA2V2/eQdPgQZ2zUPV8ZKw=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0oWgZtLCOYD0iOMLfZS9bs3h27e0I4gn/BVns7sfW32PpL3CRXmMQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOg4VZTVaSxi1QpQM8EjVjfcCNZKFEMZCNYMhrcTv/nElOZx9GBGCfMl9iMecorGSo0OimSA3VLZrbhTkGXi5aQMOWrd0k+nF9NUsshQgVq3PTcxfobKcCrYuNhJNUuQDrHP2pZGKJn2s+m1Y3JqlR4JY2UrMmSq/p3IUGo9koHtlGgGetGbiP957dSE137GoyQ1LKKzRWEqiInJ5HXS44pRI0aWIFXc3kroABVSYwOa2xLIcdGG4i1GsEwa5xXvsuLeX5SrN3k8BTiGEzgDD66gCndQgzpQeIQXeIU359l5dz6cz1nripPPHMEcnK9f2g+Vwg==</latexit>↵<latexit sha1_base64="Qfj3BmA2V2/eQdPgQZ2zUPV8ZKw=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0oWgZtLCOYD0iOMLfZS9bs3h27e0I4gn/BVns7sfW32PpL3CRXmMQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOg4VZTVaSxi1QpQM8EjVjfcCNZKFEMZCNYMhrcTv/nElOZx9GBGCfMl9iMecorGSo0OimSA3VLZrbhTkGXi5aQMOWrd0k+nF9NUsshQgVq3PTcxfobKcCrYuNhJNUuQDrHP2pZGKJn2s+m1Y3JqlR4JY2UrMmSq/p3IUGo9koHtlGgGetGbiP957dSE137GoyQ1LKKzRWEqiInJ5HXS44pRI0aWIFXc3kroABVSYwOa2xLIcdGG4i1GsEwa5xXvsuLeX5SrN3k8BTiGEzgDD66gCndQgzpQeIQXeIU359l5dz6cz1nripPPHMEcnK9f2g+Vwg==</latexit>↵

3

2 4

1

⇠

<latexit sha1_base64="r7EKEev7Gvuw3iUQEaid+16eTEE=">AAAB6nicbZDLSgMxFIbPeK21atWlIMEiuCozRVB3BTcuW7QXaIeSSTNtaJIZkoxYhi5dunGhiFsfos/hzmfwJUwvC239IfDx/+eQc04Qc6aN6345K6tr6xubma3sdm5ndy+/f1DXUaIIrZGIR6oZYE05k7RmmOG0GSuKRcBpIxhcT/LGPVWaRfLODGPqC9yTLGQEG2vdth9YJ19wi+5UaBm8ORTKuXH1+/F4XOnkP9vdiCSCSkM41rrlubHxU6wMI5yOsu1E0xiTAe7RlkWJBdV+Oh11hE6t00VhpOyTBk3d3x0pFloPRWArBTZ9vZhNzP+yVmLCSz9lMk4MlWT2UZhwZCI02Rt1maLE8KEFTBSzsyLSxwoTY6+TtUfwFldehnqp6J0Xr6peoVyCmTJwBCdwBh5cQBluoAI1INCDJ3iBV4c7z86b8z4rXXHmPYfwR87HDzKUkWk=</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

1/n

<latexit sha1_base64="DP5IHH2VV3Bpw/OfB3yK3nyJvUY=">AAAB6nicbZDLSgMxFIbPeK31VuvSTbAIXdWZIqi7ghuXFe0FOkPJpJk2NJMMSUYoQx9BBBeKuPVJfAR3Poh708tCW38IfPz/OeScEyacaeO6X87K6tr6xmZuK7+9s7u3XzgoNrVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC4dUkb91TpZkUd2aU0CDGfcEiRrCx1q13KrqFkltxp0LL4M2hVCv65e+PR7/eLXz6PUnSmApDONa647mJCTKsDCOcjvN+qmmCyRD3aceiwDHVQTYddYxOrNNDkVT2CYOm7u+ODMdaj+LQVsbYDPRiNjH/yzqpiS6CjIkkNVSQ2UdRypGRaLI36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAzNasU7q1zeeKVaFWbKwREcQxk8OIcaXEMdGkCgDw/wDC8Od56cV+dtVrrizHsO4Y+c9x9ZyJDX</latexit>

<latexit sha1_base64="/HE1yW2R7fMBm6iT3SMSxl0WAKY=">AAACA3icbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAzaWEYwD8gu4e7sbDJkdnaYmRXCktJfsNXeTmz9EFu/xEmyhUk8cOFwzr2cywklZ9q47rdTWlvf2Nwqb1d2dvf2D6qHR22dZorQFkl5qrohaMqZoC3DDKddqSgkIaedcHQ39TtPVGmWikczljRIYCBYzAgYK/m+YTyiPnA5hH615tbdGfAq8QpSQwWa/eqPH6UkS6gwhIPWPc+VJshBGUY4nVT8TFMJZAQD2rNUQEJ1kM9+nuAzq0Q4TpUdYfBM/XuRQ6L1OAntZgJmqJe9qfif18tMfBPkTMjMUEHmQXHGsUnxtAAcMUWJ4WNLgChmf8VkCAqIsTUtpITJpGJL8ZYrWCXti7p3VXcfLmuN26KeMjpBp+gceegaNdA9aqIWIkiiF/SK3pxn5935cD7nqyWnuDlGC3C+fgGiq5hs</latexit>

↵̃
<latexit sha1_base64="/HE1yW2R7fMBm6iT3SMSxl0WAKY=">AAACA3icbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAzaWEYwD8gu4e7sbDJkdnaYmRXCktJfsNXeTmz9EFu/xEmyhUk8cOFwzr2cywklZ9q47rdTWlvf2Nwqb1d2dvf2D6qHR22dZorQFkl5qrohaMqZoC3DDKddqSgkIaedcHQ39TtPVGmWikczljRIYCBYzAgYK/m+YTyiPnA5hH615tbdGfAq8QpSQwWa/eqPH6UkS6gwhIPWPc+VJshBGUY4nVT8TFMJZAQD2rNUQEJ1kM9+nuAzq0Q4TpUdYfBM/XuRQ6L1OAntZgJmqJe9qfif18tMfBPkTMjMUEHmQXHGsUnxtAAcMUWJ4WNLgChmf8VkCAqIsTUtpITJpGJL8ZYrWCXti7p3VXcfLmuN26KeMjpBp+gceegaNdA9aqIWIkiiF/SK3pxn5935cD7nqyWnuDlGC3C+fgGiq5hs</latexit>

↵̃

<latexit sha1_base64="/HE1yW2R7fMBm6iT3SMSxl0WAKY=">AAACA3icbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAzaWEYwD8gu4e7sbDJkdnaYmRXCktJfsNXeTmz9EFu/xEmyhUk8cOFwzr2cywklZ9q47rdTWlvf2Nwqb1d2dvf2D6qHR22dZorQFkl5qrohaMqZoC3DDKddqSgkIaedcHQ39TtPVGmWikczljRIYCBYzAgYK/m+YTyiPnA5hH615tbdGfAq8QpSQwWa/eqPH6UkS6gwhIPWPc+VJshBGUY4nVT8TFMJZAQD2rNUQEJ1kM9+nuAzq0Q4TpUdYfBM/XuRQ6L1OAntZgJmqJe9qfif18tMfBPkTMjMUEHmQXHGsUnxtAAcMUWJ4WNLgChmf8VkCAqIsTUtpITJpGJL8ZYrWCXti7p3VXcfLmuN26KeMjpBp+gceegaNdA9aqIWIkiiF/SK3pxn5935cD7nqyWnuDlGC3C+fgGiq5hs</latexit>

↵̃
<latexit sha1_base64="/HE1yW2R7fMBm6iT3SMSxl0WAKY=">AAACA3icbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAzaWEYwD8gu4e7sbDJkdnaYmRXCktJfsNXeTmz9EFu/xEmyhUk8cOFwzr2cywklZ9q47rdTWlvf2Nwqb1d2dvf2D6qHR22dZorQFkl5qrohaMqZoC3DDKddqSgkIaedcHQ39TtPVGmWikczljRIYCBYzAgYK/m+YTyiPnA5hH615tbdGfAq8QpSQwWa/eqPH6UkS6gwhIPWPc+VJshBGUY4nVT8TFMJZAQD2rNUQEJ1kM9+nuAzq0Q4TpUdYfBM/XuRQ6L1OAntZgJmqJe9qfif18tMfBPkTMjMUEHmQXHGsUnxtAAcMUWJ4WNLgChmf8VkCAqIsTUtpITJpGJL8ZYrWCXti7p3VXcfLmuN26KeMjpBp+gceegaNdA9aqIWIkiiF/SK3pxn5935cD7nqyWnuDlGC3C+fgGiq5hs</latexit>

↵̃Add teleport
probability

Laplacian Perturbation
<latexit sha1_base64="6t7gXyqsOgC49LjEvZyR36jbv4U=">AAACHXicbZDLSgMxFIYz3q23qks3wSoIQpkRRTeCqAuXFewFOqWcSU/b0MyF5IxQSl/Al/AV3OrenbgVtz6JaTsLq/4Q+PKfczjJHyRKGnLdT2dmdm5+YXFpObeyura+kd/cqpg41QLLIlaxrgVgUMkIyyRJYS3RCGGgsBr0rkb16j1qI+PojvoJNkLoRLItBZC1mvk9n6RqIfdBJV3g5xkc+teoCLJbM19wi+5Y/C94GRRYplIz/+W3YpGGGJFQYEzdcxNqDECTFAqHOT81mIDoQQfrFiMI0TQG498M+b51Wrwda3si4mP358QAQmP6YWA7Q6Cu+V0bmf/V6im1zxoDGSUpYSQmi9qp4hTzUTS8JTUKUn0LILS0b+WiCxoE2QCntgThMGdD8X5H8BcqR0XvpOjeHhcuLrN4ltgO22UHzGOn7ILdsBIrM8Ee2BN7Zi/Oo/PqvDnvk9YZJ5vZZlNyPr4B6R2hfw==</latexit>

↵̃ = ↵ + �↵

<latexit sha1_base64="DA//PZoe4feV3DX1BGs35/lTdD0=">AAACJXicbVDLSgNBEJz1GeMr6tHLYhAiSNgVRY9BD3rwEME8IBtC72TWDM7uDjO9Ylj2J/wJf8Gr3r2J4EnwS5w8DiaxoKGo6qa7y5eCa3ScL2tufmFxaTm3kl9dW9/YLGxt13WcKMpqNBaxavqgmeARqyFHwZpSMQh9wRr+/cXAbzwwpXkc3WJfsnYIdxEPOAU0Uqdw6IWAPT9Ir7NO6iF7xBSkVFlWGhoURHqZHXogZA8OOoWiU3aGsGeJOyZFMka1U/jxujFNQhYhFaB1y3UktlNQyKlgWd5LNJNA7+GOtQyNIGS6nQ6/yux9o3TtIFamIrSH6t+JFEKt+6FvOgen6mlvIP7ntRIMztopj2SCLKKjRUEibIztQUR2lytGUfQNAaq4udWmPVBA0QQ5scUPs7wJxZ2OYJbUj8ruSdm5OS5Wzsfx5Mgu2SMl4pJTUiFXpEpqhJIn8kJeyZv1bL1bH9bnqHXOGs/skAlY379D+6aW</latexit>

Lappr(G,↵)
<latexit sha1_base64="h2jtSpc8/RtL5Z981KpaJ4MMAZM=">AAACK3icbVDLSgNBEJz1bXxFPXpZDIKChN2g6FH0oAcPEYwK2RB6J71mcHZ3mOkVw7L/4U/4C1717knxJPgfTh4HXwUNRVU33V2hksKQ5706Y+MTk1PTM7OlufmFxaXy8sqFSTPNscFTmeqrEAxKkWCDBEm8UhohDiVehjdHff/yFrURaXJOPYWtGK4TEQkOZKV2uRbEQN0wyk+Ldh4Q3lEOSumi2BwYHGR+XGwHJGQHA5CqC1vtcsWregO4f4k/IhU2Qr1d/gg6Kc9iTIhLMKbpe4paOWgSXGJRCjKDCvgNXGPT0gRiNK188Fvhblil40aptpWQO1C/T+QQG9OLQ9vZP9j89vrif14zo2i/lYtEZYQJHy6KMulS6vaDcjtCIyfZswS4FvZWl3dBAycb548tYVyUbCj+7wj+kota1d+temc7lYPDUTwzbI2ts03msz12wE5YnTUYZ/fskT2xZ+fBeXHenPdh65gzmlllP+B8fgFre6lA</latexit>

Lappr(G, ↵̃)

Approximate directed
graph Laplacian

Original
<latexit sha1_base64="/Q1+FwUDa+aFFn0aFl/qjLQvu+k=">AAACAnicbVC7SgNBFL0bXzG+opY2i0GwCruiaBm00DKCiYHNEmYns8mQeSwzs0JY0vkLttrbia0/YuuXOJtsYRIPDBzOuZd75kQJo9p43rdTWlldW98ob1a2tnd296r7B20tU4VJC0smVSdCmjAqSMtQw0gnUQTxiJHHaHST+49PRGkqxYMZJyTkaCBoTDEyVgq6HJkhRiy7nfSqNa/uTeEuE78gNSjQ7FV/un2JU06EwQxpHfheYsIMKUMxI5NKN9UkQXiEBiSwVCBOdJhNI0/cE6v03Vgq+4Rxp+rfjQxxrcc8spN5RL3o5eJ/XpCa+CrMqEhSQwSeHYpT5hrp5v93+1QRbNjYEoQVtVldPEQKYWNbmrsS8UnFluIvVrBM2md1/6Lu3Z/XGtdFPWU4gmM4BR8uoQF30IQWYJDwAq/w5jw7786H8zkbLTnFziHMwfn6Bel6mAc=</latexit>G

<latexit sha1_base64="Qfj3BmA2V2/eQdPgQZ2zUPV8ZKw=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0oWgZtLCOYD0iOMLfZS9bs3h27e0I4gn/BVns7sfW32PpL3CRXmMQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOg4VZTVaSxi1QpQM8EjVjfcCNZKFEMZCNYMhrcTv/nElOZx9GBGCfMl9iMecorGSo0OimSA3VLZrbhTkGXi5aQMOWrd0k+nF9NUsshQgVq3PTcxfobKcCrYuNhJNUuQDrHP2pZGKJn2s+m1Y3JqlR4JY2UrMmSq/p3IUGo9koHtlGgGetGbiP957dSE137GoyQ1LKKzRWEqiInJ5HXS44pRI0aWIFXc3kroABVSYwOa2xLIcdGG4i1GsEwa5xXvsuLeX5SrN3k8BTiGEzgDD66gCndQgzpQeIQXeIU359l5dz6cz1nripPPHMEcnK9f2g+Vwg==</latexit>↵

Figure 5.1: Illustration of Laplacian perturbation. ξ is the auxiliary node defined in
[160] and the red dotted lines represent adding the self-loops.

Algorithm 5: Laplacian Perturbation Φ(·) Procedure
Input: Directed graph adjacency matrix: A, teleport probability α,

perturbation term ∆α
Output: Perturbed Laplacian L̂appr

1: Ã← A + In×n ;
2: P̃← D̃−1Ã ;
3: α̂ = α + ∆α ;
4: π̂appr ← (1− α̂)π̂apprP̃ + 1

n
α̂

1+α̂11×n;
5: Π̂appr ← 1

||π̂appr||1
Diag(π̂appr);

6: L̂appr ← I− 1
2

(
Π̂

1
2apprP̃Π̂−

1
2appr + Π̂−

1
2apprP̃T Π̂

1
2appr

)
;

7: return L̂appr

5.2.3 Justification of Laplacian Perturbation

Noticing the inherent connections between graph Laplacian and von Neumann
entropy [205], we can use the proprieties of von Neumann entropy to analyze the
Laplacian perturbation operation quantitatively. We start with defining the von
Neumann entropy of directed graphs.

Definition 19. Directed graph von Neumann entropy. Given a directed
graph G = (V , E), its von Neumann entropy [205] based on the Lappr is defined as

H̃VN(G, α) = 1− 1
n
− 1

2n2

 ∑
(u,v)∈E

(
1

dout
u dout

v

+ πappr(u)
πappr(v)dout2

u

)
−

∑
(u,v)∈Ẽ

1
dout
u dout

v

 ,
(5.6)

where Ẽ = {(u, v) | (u, v) ∈ E and (v, u) /∈ E}. din
u = ∑

v∈V A(v, u) and dout
u =∑

v∈V A(u, v) are the in- and out-degree of the node u.

90

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Since the Laplacian perturbation does not involve the nodes/edges and only
changes the teleport probability connecting to the auxiliary node ξ as shown in
Figure 5.1, the number of nodes n and the degrees of nodes du (edge distribution) will
not change. On the contrary, the approximate eigenvector πappr has been changed.
According to Equation 5.6, the essence of this operation is a perturbation to the
directed graph entropy. We will further introduce the perturbation error to quantify
this impact.

Definition 20. Perturbation error. Given the perturbation term ∆α, we define
the perturbation error of directed graph von Neumann entropy caused by Laplacian
perturbation as ∆H̃VN(α, α + ∆α) = H̃VN(G, α)− H̃VN(G, α + ∆α).

From the above definition, it is easy to find out that the perturbation error is a
function of α and ∆α. α is typically fixed, e.g., set to 0.1. Then with α fixed, we
would like to figure out the monotonicity of the perturbation error with respect to
∆α, which helps us to explore the effect of the error on the von Neumann entropy.
We prove the monotonicity of the perturbation error in Theorem 4.

Theorem 4. Monotonicity of the perturbation error. The perturbation error
∆H̃VN increases monotonically with the Laplacian perturbation term ∆α.

Proof. The perturbation error is defined in Definition 20 as

∆H̃VN(α, α + ∆α) = 1
2n2

 ∑
(u,v)∈E

(
πα+∆α

appr (u)
πα+∆α

appr (v)dout2
u

−
παappr(u)

παappr(v)dout2
u

) . (5.7)

We start out the proof from Equation 5.2, leading to

(1− α)παapprP̃ + 1
n

α

1 + α
11×n = παappr, (5.8)

and the approximate eigenvector component for node u is

παappr(u) = (1− α)
∑

i,(i,u)∈E
παappr(i)P̃(i, u) + 1

n

α

1 + α
. (5.9)

In the [205], they assume that the eigenvector component is proportional to the
in-degree of the corresponding node when the neighborhood of this node has similar
out-degree and in-degree, i.e.,

91

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

∑
i,(i,u)∈E π

α
appr(i)P̃(i, u)∑

i,(i,v)∈E παappr(i)P̃(i, v)
≈ din

u

din
v

= cdin
u

cdin
v

, (5.10)

where the constant c controls the din
u and παappr(i)P̃(i, u) at the same scale. Meanwhile,

they experimentally verify that even under this strong assumption, the calculated
von Neumann entropy does not show significant errors [205]. Thus, we adopt their
assumption and simply Equation 5.10 to

∑
i,(i,u)∈E

παappr(i)P̃(i, u) ≈ cdin
u . (5.11)

We further let 0 < α1 < α2 < 1 and take them into Equation 5.7. We can derive
∆H̃VN(α1, α2) as

= 1
2n2

 ∑
(u,v)∈E

1
dout2
u

(
(1− α2)cdin

u + 1
n

α2
1+α2

(1− α2)cdin
v + 1

n
α2

1+α2

−
(1− α1)cdin

u + 1
n

α1
1+α1

(1− α1)cdin
v + 1

n
α1

1+α1

)
= 1

2n2

 ∑
(u,v)∈E

1
dout2
u

(
n(1− α2

2)cdin
u + α2

n(1− α22)cdin
v + α2

− n(1− α1
2)cdin

u + α1
n(1− α12)cdin

v + α1

)
= 1

2n2

 ∑
(u,v)∈E

1
dout2
u

(
(n(1− α2

2)α1c(din
u − din

v)− n(1− α1
2)α2c(din

u − din
v)

(n(1− α22)cdin
v + α2)(n(1− α12)cdin

v + α1)

)
= 1

2n2

 ∑
(u,v)∈E

din
u − din

v

dout2
u

(
nc(1− α2

2)α1 − nc(1− α1
2)α2

(n(1− α22)cdin
v + α2)(n(1− α12)cdin

v + α1)

)
= 1

2n2

 ∑
(u,v)∈E

din
u − din

v

dout2
u

(
nc(1/α2 − α2)− nc(1/α1 − α1)

(n(1− α22)cdin
v + α2)(n(1− α12)cdin

v + α1)/(α1α2)

) .
(5.12)

Since din
v 6 n and dout

u 6 n,

∆H̃VN(α1, α2) > 1
2n2

∑
(u,v)∈E

(din
u − din

v)
(

c
n(1/α2 − α2 − 1/α1 + α1)

(n2(1− α22)c+ α2)(n2(1− α12)c+ α1)/(α1α2)

)
︸ ︷︷ ︸

constant C

>
C

2n2

∑
(u,v)∈E

(din
u − din

v).

(5.13)

As 0 < α1 < α2 < 1, the constant C < 0. And the edges point from node u to node
v, thus the term ∑

(u,v)∈E(din
u − din

v) < 0. Therefore,

∆H̃VN(α1, α2) > 0. (5.14)

92

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Clearly, the perturbation error ∆H̃VN increases monotonically with the Laplacian
perturbation term ∆α. The proof is concluded.

Based on the monotonicity, we further give the upper and lower bounds of ∆H̃VN.

Theorem 5. Bounds on the perturbation error. Given a directed graph G =
(V , E) and the teleport probability α, the inequality

0 < ∆H̃VN(α, α + ∆α) < 1
2n2

 ∑
(u,v)∈E

(
1

dout2
u

−
παappr(u)

παappr(v)dout2
u

) (5.15)

holds. When the perturbation term ∆α = 0, ∆H̃VN = 0 and when ∆α→ 1− α, the
perturbation error ∆H̃VN towards the upper bound.

Proof. From Theorem 4, ∆H̃VN increases monotonically with the Laplacian pertur-
bation term ∆α. Thus, when ∆α = 0, ∆H̃VN = 0. For the upper bound of the
perturbation error, we start with Equation 5.2 that

(1− α−∆α)πα+∆α
appr P̃ + 1

n

α + ∆α
1 + α + ∆α11×n = πα+∆α

appr . (5.16)

Since πappr is the stationary distribution and P̃ is transition matrix, ||πapprP̃||∞ 6

||πappr||∞||P̃||∞ 6 1. It is easy to observe that when α+ ∆α→ 1, πα+∆α
appr → 1

2n11×n,
which means πα+∆α

appr (u), πα+∆α
appr (v) are equivalent as α + ∆α→ 1. Thus,

∆H̃VN(α, α + ∆α)→ 1
2n2

 ∑
(u,v)∈E

(
1

dout2
u

−
παappr(u)

παappr(v)dout2
u

) , (5.17)

when α + ∆α→ 1. The proof is concluded.

We show in Theorem 4 that Laplacian perturbation can provide contrastive
information in various magnitude for the encoder to learn the representations by
changing ∆α. Meanwhile, since it does not need to alter the structure and the
number of nodes n is generally high, the perturbation error will be in a very small
range as shown in Theorem 5. This can help the encoder to focus more on the
directed graph structure rather than just learning from the errors.

93

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

H
ea

d
2

 S
co

ri
ng

 F
un

ct
io

n
<latexit sha1_base64="aQJgf/40gaduJu0slBJFBg6oPxI=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoseiHjxWsLaQhrLZbtulm03YfRFK6M/w4kERr/4ab/4bN20O2jqwMMy8x86bMJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6SGS6F4CwVK3kk0p1EoeTsc3+R++4lrI2L1gJOEBxEdKjEQjKKV/G5EccSozG6nvWrNrbszkGXiFaQGBZq96le3H7M04gqZpMb4nptgkFGNgkk+rXRTwxPKxnTIfUsVjbgJslnkKTmxSp8MYm2fQjJTf29kNDJmEoV2Mo9oFr1c/M/zUxxcBZlQSYpcsflHg1QSjEl+P+kLzRnKiSWUaWGzEjaimjK0LVVsCd7iycvk8azuXdTd+/Na47qoowxHcAyn4MElNOAOmtACBjE8wyu8Oei8OO/Ox3y05BQ7h/AHzucPdi+RXg==</latexit> D

 Pacing Function
<latexit sha1_base64="tw+0S4S6G6RgWzd75cggQobaaUE=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRJRdFl047KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRNWeDas2re3O4q8QvSA0KNAfVr/5Q0TRmEqkgxvR8L8EgIxo5FWxW6aeGJYROyIj1LJUkZibI5pFn7plVhm6ktH0S3bn6eyMjsTHTOLSTeUSz7OXif14vxegmyLhMUmSSLj6KUuGicvP73SHXjKKYWkKo5jarS8dEE4q2pYotwV8+eZW0L+r+Vd17uKw1bos6ynACp3AOPlxDA+6hCS2goOAZXuHNQefFeXc+FqMlp9g5hj9wPn8AiGuRag==</latexit>P

Input Views Head
<latexit sha1_base64="qmqxvw54qUUoUaz9MnxwYmJpOwM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUGPbLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rbuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDzceM7w==</latexit>g Loss

<latexit sha1_base64="PMvWQuVKNOMXJBHX6ukthBYFtiQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6q7D5e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA64jj8=</latexit>

`

Difficulty

Pace

H
ea

d
1

 Contrast

 Augmentation
<latexit sha1_base64="OACujG2oNqMjEJ0rPBSDKuBmND4=">AAAB+3icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKthbaUDbbTbN0dxN2N0IJ+Qte9e5NvPpjvPpL3LQ52NYHA4/3ZpiZFyScaeO6305lbX1jc6u6XdvZ3ds/qB8edXWcKkI7JOax6gVYU84k7RhmOO0limIRcPoUTO4K/+mZKs1i+WimCfUFHksWMoJNIQ3aERvWG27TnQGtEq8kDSjRHtZ/BqOYpIJKQzjWuu+5ifEzrAwjnOa1QappgskEj2nfUokF1X42uzVHZ1YZoTBWtqRBM/XvRIaF1lMR2E6BTaSXvUL8z+unJrzxMyaT1FBJ5ovClCMTo+JxNGKKEsOnlmCimL0VkQgrTIyNZ2FLIPKaDcVbjmCVdC+a3lXTfbhstG7LeKpwAqdwDh5cQwvuoQ0dIBDBC7zCm5M7786H8zlvrTjlzDEswPn6BSLmlMk=</latexit>

� Original
<latexit sha1_base64="/Q1+FwUDa+aFFn0aFl/qjLQvu+k=">AAACAnicbVC7SgNBFL0bXzG+opY2i0GwCruiaBm00DKCiYHNEmYns8mQeSwzs0JY0vkLttrbia0/YuuXOJtsYRIPDBzOuZd75kQJo9p43rdTWlldW98ob1a2tnd296r7B20tU4VJC0smVSdCmjAqSMtQw0gnUQTxiJHHaHST+49PRGkqxYMZJyTkaCBoTDEyVgq6HJkhRiy7nfSqNa/uTeEuE78gNSjQ7FV/un2JU06EwQxpHfheYsIMKUMxI5NKN9UkQXiEBiSwVCBOdJhNI0/cE6v03Vgq+4Rxp+rfjQxxrcc8spN5RL3o5eJ/XpCa+CrMqEhSQwSeHYpT5hrp5v93+1QRbNjYEoQVtVldPEQKYWNbmrsS8UnFluIvVrBM2md1/6Lu3Z/XGtdFPWU4gmM4BR8uoQF30IQWYJDwAq/w5jw7786H8zkbLTnFziHMwfn6Bel6mAc=</latexit>G

En
co

de
r

<latexit sha1_base64="4NMUkv6+uc3Zb/mDRyY5WPGrEA0=">AAACD3icbVDLSsNAFJ34rPUVFdy4GSyCq5KIoisp6MJlBfuAJoSb6aQZOnkwMxFKzEf4C251707c+glu/RKnbRa29cCFwzn3ci7HTzmTyrK+jaXlldW19cpGdXNre2fX3NtvyyQThLZIwhPR9UFSzmLaUkxx2k0FhcjntOMPb8Z+55EKyZL4QY1S6kYwiFnACCgteeah0wyZlzu3lCvADvA0BM8uPLNm1a0J8CKxS1JDJZqe+eP0E5JFNFaEg5Q920qVm4NQjHBaVJ1M0hTIEAa0p2kMEZVuPvm/wCda6eMgEXpihSfq34scIilHka83I1ChnPfG4n9eL1PBlZuzOM0Ujck0KMg4Vgkel4H7TFCi+EgTIILpXzEJQQBRurKZFD8qqroUe76CRdI+q9sXdev+vNa4LuupoCN0jE6RjS5RA92hJmohgp7QC3pFb8az8W58GJ/T1SWjvDlAMzC+fgEX4ZxZ</latexit>

��↵1

<latexit sha1_base64="sLWptF47dPDRsLmJZS2SfwSuIas=">AAACEHicbVDLSsNAFJ34rPUVdeHCzWARXJWkKLqSgi5cVrAPaEK4mU6aoZNJmJkIJfQn/AW3uncnbv0Dt36JaZqFbT1w4XDOvdx7j59wprRlfRsrq2vrG5uVrer2zu7evnlw2FFxKgltk5jHsueDopwJ2tZMc9pLJIXI57Trj26nfveJSsVi8ajHCXUjGAoWMAI6lzzz2GmFzMucO8o1YAd4EoLXmFQ9s2bVrQJ4mdglqaESLc/8cQYxSSMqNOGgVN+2Eu1mIDUjnE6qTqpoAmQEQ9rPqYCIKjcrHpjgs1wZ4CCWeQmNC/XvRAaRUuPIzzsj0KFa9Kbif14/1cG1mzGRpJoKMlsUpBzrGE/TwAMmKdF8nBMgkuW3YhKCBKLzzOa2+FERir0YwTLpNOr2Zd16uKg1b8p4KugEnaJzZKMr1ET3qIXaiKAJekGv6M14Nt6ND+Nz1rpilDNHaA7G1y9WqJxu</latexit>

��↵2

<latexit sha1_base64="EkjBW9wpiojq97fD/MwEReNqxRY=">AAACEHicbVDLSsNAFJ3UV62vqAsXbgaL4KokouhKCrpwWcE+oAnhZjpphk4mYWYilJCf8Bfc6t6duPUP3Polpm0WtvXAhcM593LvPX7CmdKW9W1UVlbX1jeqm7Wt7Z3dPXP/oKPiVBLaJjGPZc8HRTkTtK2Z5rSXSAqRz2nXH91O/O4TlYrF4lGPE+pGMBQsYAR0IXnmkdMKmZc5d5RrwA7wJAQvymueWbca1hR4mdglqaMSLc/8cQYxSSMqNOGgVN+2Eu1mIDUjnOY1J1U0ATKCIe0XVEBElZtNH8jxaaEMcBDLooTGU/XvRAaRUuPILzoj0KFa9Cbif14/1cG1mzGRpJoKMlsUpBzrGE/SwAMmKdF8XBAgkhW3YhKCBKKLzOa2+LNQ7MUIlknnvGFfNqyHi3rzpoynio7RCTpDNrpCTXSPWqiNCMrRC3pFb8az8W58GJ+z1opRzhyiORhfv7Q6nKk=</latexit>

��↵m

<latexit sha1_base64="oFftXNOmMJIqRKAq/tEwSMCsVzs=">AAACEHicbVDLSsNAFJ34rPUVdeHCzWARXJVEFF1JQRduhAr2AU0IN9NJO3QmCTMToYT8hL/gVvfuxK1/4NYvMU2zsK0HLhzOuZd77/FjzpS2rG9jaXlldW29slHd3Nre2TX39tsqSiShLRLxSHZ9UJSzkLY005x2Y0lB+Jx2/NHNxO88UalYFD7qcUxdAYOQBYyAziXPPHSaQ+alzi3lGrADPB6Cd59VPbNm1a0CeJHYJamhEk3P/HH6EUkEDTXhoFTPtmLtpiA1I5xmVSdRNAYyggHt5TQEQZWbFg9k+CRX+jiIZF6hxoX6dyIFodRY+HmnAD1U895E/M/rJTq4clMWxommIZkuChKOdYQnaeA+k5RoPs4JEMnyWzEZggSi88xmtviiCMWej2CRtM/q9kXdejivNa7LeCroCB2jU2SjS9RAd6iJWoigDL2gV/RmPBvvxofxOW1dMsqZAzQD4+sXgXqciQ==</latexit>

��↵M

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="4NMUkv6+uc3Zb/mDRyY5WPGrEA0=">AAACD3icbVDLSsNAFJ34rPUVFdy4GSyCq5KIoisp6MJlBfuAJoSb6aQZOnkwMxFKzEf4C251707c+glu/RKnbRa29cCFwzn3ci7HTzmTyrK+jaXlldW19cpGdXNre2fX3NtvyyQThLZIwhPR9UFSzmLaUkxx2k0FhcjntOMPb8Z+55EKyZL4QY1S6kYwiFnACCgteeah0wyZlzu3lCvADvA0BM8uPLNm1a0J8CKxS1JDJZqe+eP0E5JFNFaEg5Q920qVm4NQjHBaVJ1M0hTIEAa0p2kMEZVuPvm/wCda6eMgEXpihSfq34scIilHka83I1ChnPfG4n9eL1PBlZuzOM0Ujck0KMg4Vgkel4H7TFCi+EgTIILpXzEJQQBRurKZFD8qqroUe76CRdI+q9sXdev+vNa4LuupoCN0jE6RjS5RA92hJmohgp7QC3pFb8az8W58GJ/T1SWjvDlAMzC+fgEX4ZxZ</latexit>

��↵1

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="sLWptF47dPDRsLmJZS2SfwSuIas=">AAACEHicbVDLSsNAFJ34rPUVdeHCzWARXJWkKLqSgi5cVrAPaEK4mU6aoZNJmJkIJfQn/AW3uncnbv0Dt36JaZqFbT1w4XDOvdx7j59wprRlfRsrq2vrG5uVrer2zu7evnlw2FFxKgltk5jHsueDopwJ2tZMc9pLJIXI57Trj26nfveJSsVi8ajHCXUjGAoWMAI6lzzz2GmFzMucO8o1YAd4EoLXmFQ9s2bVrQJ4mdglqaESLc/8cQYxSSMqNOGgVN+2Eu1mIDUjnE6qTqpoAmQEQ9rPqYCIKjcrHpjgs1wZ4CCWeQmNC/XvRAaRUuPIzzsj0KFa9Kbif14/1cG1mzGRpJoKMlsUpBzrGE/TwAMmKdF8nBMgkuW3YhKCBKLzzOa2+FERir0YwTLpNOr2Zd16uKg1b8p4KugEnaJzZKMr1ET3qIXaiKAJekGv6M14Nt6ND+Nz1rpilDNHaA7G1y9WqJxu</latexit>

��↵2

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="EkjBW9wpiojq97fD/MwEReNqxRY=">AAACEHicbVDLSsNAFJ3UV62vqAsXbgaL4KokouhKCrpwWcE+oAnhZjpphk4mYWYilJCf8Bfc6t6duPUP3Polpm0WtvXAhcM593LvPX7CmdKW9W1UVlbX1jeqm7Wt7Z3dPXP/oKPiVBLaJjGPZc8HRTkTtK2Z5rSXSAqRz2nXH91O/O4TlYrF4lGPE+pGMBQsYAR0IXnmkdMKmZc5d5RrwA7wJAQvymueWbca1hR4mdglqaMSLc/8cQYxSSMqNOGgVN+2Eu1mIDUjnOY1J1U0ATKCIe0XVEBElZtNH8jxaaEMcBDLooTGU/XvRAaRUuPILzoj0KFa9Cbif14/1cG1mzGRpJoKMlsUpBzrGE/SwAMmKdF8XBAgkhW3YhKCBKKLzOa2+LNQ7MUIlknnvGFfNqyHi3rzpoynio7RCTpDNrpCTXSPWqiNCMrRC3pFb8az8W58GJ+z1opRzhyiORhfv7Q6nKk=</latexit>

��↵m

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

<latexit sha1_base64="oFftXNOmMJIqRKAq/tEwSMCsVzs=">AAACEHicbVDLSsNAFJ34rPUVdeHCzWARXJVEFF1JQRduhAr2AU0IN9NJO3QmCTMToYT8hL/gVvfuxK1/4NYvMU2zsK0HLhzOuZd77/FjzpS2rG9jaXlldW29slHd3Nre2TX39tsqSiShLRLxSHZ9UJSzkLY005x2Y0lB+Jx2/NHNxO88UalYFD7qcUxdAYOQBYyAziXPPHSaQ+alzi3lGrADPB6Cd59VPbNm1a0CeJHYJamhEk3P/HH6EUkEDTXhoFTPtmLtpiA1I5xmVSdRNAYyggHt5TQEQZWbFg9k+CRX+jiIZF6hxoX6dyIFodRY+HmnAD1U895E/M/rJTq4clMWxommIZkuChKOdYQnaeA+k5RoPs4JEMnyWzEZggSi88xmtviiCMWej2CRtM/q9kXdejivNa7LeCroCB2jU2SjS9RAd6iJWoigDL2gV/RmPBvvxofxOW1dMsqZAzQD4+sXgXqciQ==</latexit>

��↵M

<latexit sha1_base64="d6RyMCvjANd3zvo1WLmrr54fcM8=">AAACEXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1JwY0LFxXsA5pQJtNJO3TyYOZGLCH+hL/gVvfuxK1f4NYvcdJmYVsPXDiccy/33uPFgiuwrG+jtLS8srpWXq9sbG5t75i7ey0VJZKyJo1EJDseUUzwkDWBg2CdWDISeIK1vdF17rcfmFQ8Cu9hHDM3IIOQ+5wS0FLPPHACAkPPT2+zXuoAe4SUxLHMsp5ZtWrWBHiR2AWpogKNnvnj9COaBCwEKohSXduKwU2JBE4FyypOolhM6IgMWFfTkARMuenkgwwfa6WP/UjqCgFP1L8TKQmUGgee7szvVfNeLv7ndRPwL92Uh3ECLKTTRX4iMEQ4jwP3uWQUxFgTQiXXt2I6JJJQ0KHNbPGCrKJDsecjWCSt05p9XrPuzqr1qyKeMjpER+gE2egC1dENaqAmougJvaBX9GY8G+/Gh/E5bS0Zxcw+moHx9Qu0fJ52</latexit>

Lappr

 Multi-task Curriculum Learning

<latexit sha1_base64="zBrczWJ/xEVa1NVNKXun8BVdy0A=">AAACC3icbVDLSsNAFJ3UV62vWJdugkVwVRJRdFnQhcsK9gFtCDfTSTt0ZhJmJmIJ+QR/wa3u3YlbP8KtX+K0zcK2HrhwOOdezuWECaNKu+63VVpb39jcKm9Xdnb39g/sw2pbxanEpIVjFstuCIowKkhLU81IN5EEeMhIJxzfTP3OI5GKxuJBTxLicxgKGlEM2kiBXW0HWf+WMA19YMkIAp4Hds2tuzM4q8QrSA0VaAb2T38Q45QToTEDpXqem2g/A6kpZiSv9FNFEsBjGJKeoQI4UX42+z13To0ycKJYmhHamal/LzLgSk14aDY56JFa9qbif14v1dG1n1GRpJoIPA+KUubo2JkW4QyoJFiziSGAJTW/OngEErA2dS2khDyvmFK85QpWSfu87l3W3fuLWqNR1FNGx+gEnSEPXaEGukNN1EIYPaEX9IrerGfr3fqwPuerJau4OUILsL5+AcLemyg=</latexit>

V�↵m

<latexit sha1_base64="YGoVYLsICV0V5xD/wk26u7BCq8g=">AAAB+HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndGoyWJjSUkHpDAhewtc7Bh9+6yu2eChF9gq72dsfXf2PpLXOAKAV8yyct7M5mZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+fNHWSKYY+S0Si2iHVKHiMvuFGYDtVSGUosBWO7md+6wmV5kn8aMYpBpIOYh5xRo2VGn6vXHGr7hxknXg5qUCOeq/80+0nLJMYGyao1h3PTU0wocpwJnBa6mYaU8pGdIAdS2MqUQeT+aFTcmGVPokSZSs2ZK7+nZhQqfVYhrZTUjPUq95M/M/rZCa6CyY8TjODMVssijJBTEJmX5M+V8iMGFtCmeL2VsKGVFFmbDZLW0I5LdlQvNUI1knzqurdVN3GdaVWy+MpwhmcwyV4cAs1eIA6+MAA4QVe4c15dt6dD+dz0Vpw8plTWILz9QveAZOB</latexit>

U

<latexit sha1_base64="peCF+zEGdB4O0TvYLOoERTT6eMc=">AAAB/XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5E0TJgYxnBfEByhL3NXLJmd+/Y3RPCEfwLttrbia2/xdZf4ia5wiQ+GHi8N8PMvDDhTBvP+3YKa+sbm1vF7dLO7t7+QfnwqKnjVFFs0JjHqh0SjZxJbBhmOLYThUSEHFvh6Hbqt55QaRbLBzNOMBBkIFnEKDFWanbRkJ7fK1e8qjeDu0r8nFQgR71X/un2Y5oKlIZyonXH9xITZEQZRjlOSt1UY0LoiAywY6kkAnWQza6duGdW6btRrGxJ487UvxMZEVqPRWg7BTFDvexNxf+8TmqimyBjMkkNSjpfFKXcNbE7fd3tM4XU8LElhCpmb3XpkChCjQ1oYUsoJiUbir8cwSppXlT9q6p3f1mpXebxFOEETuEcfLiGGtxBHRpA4RFe4BXenGfn3flwPuetBSefOYYFOF+/dyqVeA==</latexit>⌘1

<latexit sha1_base64="s9M4btqHJGWTRP8axP7IwAXME8c=">AAAB/XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ConYBG8sI5gOSI+xt5pI1u3fH7p4QQvAv2GpvJ7b+Flt/iZvkCpP4YODx3gwz84JEcG1c99vJra1vbG7ltws7u3v7B8XDo4aOU8WwzmIRq1ZANQoeYd1wI7CVKKQyENgMhrdTv/mESvM4ejCjBH1J+xEPOaPGSo0OGtqtdIslt+zOQFaJl5ESZKh1iz+dXsxSiZFhgmrd9tzE+GOqDGcCJ4VOqjGhbEj72LY0ohK1P55dOyFnVumRMFa2IkNm6t+JMZVaj2RgOyU1A73sTcX/vHZqwmt/zKMkNRix+aIwFcTEZPo66XGFzIiRJZQpbm8lbEAVZcYGtLAlkJOCDcVbjmCVNCpl77Ls3l+UqjdZPHk4gVM4Bw+uoAp3UIM6MHiEF3iFN+fZeXc+nM95a87JZo5hAc7XL3o/lX4=</latexit>⌘2

<latexit sha1_base64="BmWlmnGpXSKzMrXMbuI9eHczX60=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0oahewsYxgPiA5wt5mL1mze3fszgnhCP4FW+3txNbfYusvcZNcYRIfDDzem2FmXpBIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DBxqhmvs1jGuhVQw6WIeB0FSt5KNKcqkLwZDG8nfvOJayPi6AFHCfcV7UciFIyilRodjrSruqWyW3GnIMvEy0kZctS6pZ9OL2ap4hEySY1pe26CfkY1Cib5uNhJDU8oG9I+b1saUcWNn02vHZNTq/RIGGtbEZKp+ncio8qYkQpsp6I4MIveRPzPa6cYXvuZiJIUecRmi8JUEozJ5HXSE5ozlCNLKNPC3krYgGrK0AY0tyVQ46INxVuMYJk0ziveZcW9vyhXb/J4CnAMJ3AGHlxBFe6gBnVg8Agv8ApvzrPz7nw4n7PWFSefOYI5OF+/11uVuQ==</latexit>⌘m

<latexit sha1_base64="TxSP1Ktd+Akf1I+i1c1bFrZ2pnE=">AAAB/XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EUbuAjY0QwXxAcoS9zVyyZvfu2N0TQgj+BVvt7cTW32LrL3GTXGESHww83pthZl6QCK6N6347uZXVtfWN/GZha3tnd6+4f1DXcaoY1lgsYtUMqEbBI6wZbgQ2E4VUBgIbweBm4jeeUGkeRw9mmKAvaS/iIWfUWKneRkM7d51iyS27U5Bl4mWkBBmqneJPuxuzVGJkmKBatzw3Mf6IKsOZwHGhnWpMKBvQHrYsjahE7Y+m147JiVW6JIyVrciQqfp3YkSl1kMZ2E5JTV8vehPxP6+VmvDKH/EoSQ1GbLYoTAUxMZm8TrpcITNiaAllittbCetTRZmxAc1tCeS4YEPxFiNYJvWzsndRdu/PS5XrLJ48HMExnIIHl1CBW6hCDRg8wgu8wpvz7Lw7H87nrDXnZDOHMAfn6xek25WZ</latexit>⌘M

Encoder
<latexit sha1_base64="EEGDwR6lek1YrExTWyGgCk/yIXk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSKIh5KIoseiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/naXlldW19cJGcXNre2e3tLffMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMbyZ+84lrI2L1gKOE+xHtKxEKRtFK9+HjabdUdivuFGSReDkpQ45at/TV6cUsjbhCJqkxbc9N0M+oRsEkHxc7qeEJZUPa521LFY248bPpqWNybJUeCWNtSyGZqr8nMhoZM4oC2xlRHJh5byL+57VTDK/8TKgkRa7YbFGYSoIxmfxNekJzhnJkCWVa2FsJG1BNGdp0ijYEb/7lRdI4q3gXFffuvFy9zuMowCEcwQl4cAlVuIUa1IFBH57hFd4c6bw4787HrHXJyWcO4A+czx/lZo2K</latexit>

f⇤

Figure 5.2: Illustration of our DiGCL model using Laplacian perturbation. For a
directed graph, we first generate M different pairs of contrastive views by Laplacian
perturbation. The different contrastive view pairs are then scored by a scoring
function and mapped to different training paces by a pacing function. Finally, the
arranged contrastive view pairs are input into a shared encoder to progressively
learn the unsupervised graph representation with contrastive loss.

5.3 Directed Graph Contrastive Learning
In this section, we introduce a new directed graph contrastive learning framework

(DiGCL) with a more generalized objective, and then we present multi-task curricu-
lum learning scheme to help DiGCL progressively learn from multiple easy-to-difficult
contrastive views. The model illustration is in Figure 5.2 and the pseudocode is
given in Algorithm 6.

5.3.1 Learning with Dynamic-view Contrastive Objective

As we have defined the directed graph data augmentation in Equation 5.3, we
follow the common GCL paradigm using our Laplacian perturbation.

Fixed-view Objective. GCL seeks to maximize the mutual information (MI)
between the representations of augmented graphs under different views [207, 229].
Based on it, we design a framework for directed graph contrastive learning, which
contains three steps. (1) First, given a directed graph G = (V , E) and the teleport
probability α, we generate two correlated views using for the G: U∆α1 = Φ∆α1(G, α)
and V∆α2 = Φ∆α2(G, α) as a contrastive pair. This generation is through executing
Laplacian perturbation Φ on the input G with the parameters ∆α1,∆α2 separately.
(2) Second, we take a GNN-based encoder f(·) to extract representation H∆α1 =
f(U∆α1), H∆α2 = f(V∆α2) of two contrastive views. (3) Finally, the encoder is

94

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

trained with the contrastive objective as

max
f

I (H∆α1 ; H∆α2) = max
f

I (f(Φ∆α1(G, α)); f(Φ∆α2(G, α))) , (5.18)

where I(·) is the mutual information. This framework lets the encoder f(·) learn
the representation of two different views U∆α1 and V∆α2 while preserving as much
MI as possible.

As shown in Equation 5.18, the view generation is controlled by two perturbation
terms ∆α1 and ∆α2, which may affect the objective function. The current GCLs
manually select these parameters in advance, e.g., grid search, and fix contrastive
views during training. This parameter selection strategy could make the encoder
obtained by Equation 5.18 learn only the contrastive information in some particular
views and lead to a reduced generalization of the model [195].

Dynamic-view Objective. To solve it, we propose a more generalized objective
to learn from dynamic changing contrastive views. We rewrite Equation 5.18 as

max
f∗

I (H∆α1 ; H∆α2) = max
f∗

E
∆α1,∆α2

I
(
f ∗(Φ∆α1(G, α)); f ∗(Φ∆α2(G, α))

)
, (5.19)

which requires the obtained optimal encoder f ∗ works well with ∀∆α1,∆α2 ∈ [0, 1− α)
to learn a balanced and generalized representation. Note that InfoMin [158] designs
a similar strategy that iteratively maximizes the MI in the worst views. In contrast,
our objective maximizes the average MI in all views because finding the worst
views is related to the downstream task, about which we have zero prior knowledge.
Besides, unlike other contrastive learning methods that also use multiple contrastive
views [157, 57, 203], there is no fixed number of views in our approach, and we do
not preset the parameters to fix the contrastive views but let them dynamically
change during training.

However, maximizing Equation 5.19 is not easy. Varying the perturbation term
brings changes to the MI of views, which may result in large variance during the
training process and unable to converge [158]. To increase the stability, we empirically
make one of the views unperturbed in this chapter, i.e., ∆α1 = 0. Then, we simplify
Equation 5.19 as

max
f

E
∆α
I
(
f(Lappr(G, α)); f(Φ∆α(G, α))

)
. (5.20)

95

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

We mark this view as U and design a multi-task training scheme to optimize
proposed objective1.

5.3.2 Training using Multi-task Curriculum Learning

To tackle this problem, we propose a training scheme using curriculum learning,
which utilizes prior knowledge about the difficulty of the learning tasks to learn from
easy-to-difficult contrastive views.

Multi-task Curriculum Learning. Curriculum Learning facilitates the opti-
mization on such a complex objective by scheduling the sub-objectives in a certain
order [8, 134]. Inspired by it, we regard the process of training DiGCL as a multi-task
problem [134, 141, 51, 52, 120, 96] and decompose it into M sub-tasks η1, . . . , ηM .
Thus, the objective Equation 5.20 can be rewritten as

max
f∗

1
M

M∑
m=1

E
∆αm

I
(
f ∗(Lappr(G, α)); f ∗(Φ∆αm(G, α))

)
, (5.21)

where ∆αm ∈ {Θ1,...,M} is a uniform partition of Θ = [0, 1− α) and the sub-task ηm
is associated with the ∆αm. Then we consider sub-tasks that have less difficulty
to learn in the optimization process as easy sub-tasks and vice versa as difficult
sub-tasks. We quantify this difficulty into difficulty score by means of a scoring
function D(·). Based on it, we learn sub-tasks sequentially in a certain order decided
by the pacing function P(·) to solve the main multi-task problem. Via information
transmission by a shared encoder, the previously solved easy sub-tasks will assist
in solving the next difficult sub-tasks, while the latter can fine-tune the encoder
learned by the former.

Scoring Function. The scoring function D(·) measures how difficult the sub-
task ηm is, and can be any function D(·) : {η1, . . . , ηM} → {d1, . . . , dM}, where d
denotes the difficulty score. In each sub-task, there exists a pair of contrastive views
as defined in Equation 5.21. We empirically assume that the difficulty dm of the
sub-task ηm depend on how difficult it is for the encoder f(·) to learn the contrastive
information from this sub-task. Referring to Definition 20, we can find Laplacaian
perturbation provides contrastive information to the encoder, and the perturbation

1The objective of fixing a view is not exactly the same as the original one, and we ignore this
trick’s impact.

96

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Name Expression P(da,db)(l)

log da + (db − da)
(
1 + 1/3 log

(
l
L

+ e−3
))

exp da + db−da
e3−1

(
exp

(
3l
L

)
− 1

))
linear da + (db − da) lL
Figure 5.3: (left) pacing function definitions for the three families of pacing functions
used throughout; (right) the plot of pacing function curves from each family. l is
the training epoch.

term ∆α controls how much of this information is. Therefore, we can define the
scoring function D(·) to calculate the difficulty dm of a sub-task ηm as

dm = D(ηm) = 1− ∆αm
1− α. (5.22)

The higher this score represents the smaller the perturbation error, the less contrastive
information provided, and the less the encoder is able to distinguish the difference
between the two views, resulting in a more difficult sub-task. This idea coincides
with the design of the discriminator in GAN [219, 47].

Pacing Function. The pacing function decides the learning sequence of sub-
tasks and can be any function P(·) : {1, . . . , L} → {d1, . . . , dM}, where L denotes
all the learning iterations. We consider three function families [191]: logarithmic,
exponential, and linear. Table in Figure 5.3(left) illustrates the pacing functions
used in our experiments, which are parameterized by (da, db). Here da is the initial
difficulty and db is the difficulty at the end of training, thus any pacing function with
da = db is equivalent to fixed view contrastive learning. We mark their corresponding
perturbation terms as (∆αa,∆αb). Considering the score in Equation 5.22 is defined
in a continuous domain, we set the step size of the pacing function to 1, the finest-
grained unit, i.e., L = M . This can help the model to switch between different
training views in a more delicate way.

It is desired to find the optimal solution over the entire definition domain of
∆α ∈ [0, 1 − α), we set the start point ∆αa = 0.9 − α (0.9 is used because the
boundary value cannot be obtained) and ending point ∆αb = 0 in this chapter, i.e.,
da = 1/9, db = 1.

97

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Contrastive loss. After discussing how to measure expectations in the objective,
our attention shifts to maximizing the MI. Several works have investigated the lower
bound of MI in contrastive learning, here we adopt InfoNCE [123]. For ith node ui
in view U , the node-wise objective is defined as

` (ui, vi) = − log
exp

(
S
(
ziU , z

i
V∆αm

)
/τ
)

∑n
j=1 exp

(
S
(
ziU , z

j
V∆αm

)
/τ
) , (5.23)

where vi is its corresponding positive node in view V∆αm and other nodes in view
V∆αm is negative nodes of ui. ziU is the projection of node feature that ziU ∈ ZU =
g(HU). A non-linear transformation g(·) named projection head maps augmented
representations H to another lower dimension where the contrastive loss is calculated.
S(·) denotes cosine similarity function and τ denotes the temperature parameter.
The final loss is computed across all positive node pairs in the views of one pace.
Note that GRACE [228] proposes similar InfoNCE-like loss function. Different from
it, we do not treat intra-view nodes (nodes in U except ui) as the negative samples
since GNN-based encoder is already able to learn intra-graph structure well, we
want to focus on inter-graph contrastive information.

Algorithm 6: DiGCL Training Procedure
Input: Directed graph: G, teleport probability α, scoring function: D,

pacing function: P , encoder: f ∗(·), projection head: g(·), data
augmentation function: Φ(·), loss function: `(·), number of
iterations: L, initial difficulty da, ending difficulty db

Output: Trained Encoder f ∗(·)
1: Initialize f ∗(·), g(·);
2: for l← 0 to L do
3: dm = P(da,db)(l) ;
4: ∆α ← D−1(dm) ;
5: U ← Lappr(G, α) ;
6: V ← Φ∆α(G, α) ;
7: HU ← f(U) ;
8: HV ← f(V) ;
9: ZU ← g(HU) ;
10: ZV ← g(HV) ;
11: loss← `(ZU ,ZV) ;
12: SGD(loss) ;
13: return f ∗(·)

98

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

5.4 Experiments
We conduct extensive experiments to evaluate the effectiveness of our model. We

implement the DiGCL and all baseline models using the python library of PyTorch,
PyG [40] and DGL [173]. All the experiments are conducted on a server with one
12GB NVIDIA TITAN V GPU, two Intel Xeon E5 CPUs and Ubuntu 18.04 System.
Our implement can be obtained at https://github.com/flyingtango/DiGCL.

5.4.1 Experimental Settings

5.4.1.1 Experimental Task

There are two main tasks to evaluate the capability of GCL, one is node classifi-
cation [57, 228] and the other is graph classification [207, 136]. There are different
at the instance scale. Since the datasets for graph classification are mostly small
molecules, the graph structure is simple and undirected, and the effectiveness of our
model cannot be measured. Therefore we mainly use the Node Classification in
Directed Graphs [160] to measure each module in this chapter.

Compared with the common experiments for undirected graphs [88], the challenge
of node classification in directed graph is that the given adjacency matrix A is
asymmetric, which means message passing has its direction. We will also use datasets
of undirected graphs for controlled trials. The task definition is at Definition 8.

For self-supervised methods, the task requires to use the adjacency matrix A and
the node feature matrix X to learn node representation without labels. Specifically,
after the model has unsupervisedly learned the node feature representation, simple
classical classification algorithms, such as logistic regression, SVM, and etc., can be
used to categorize the nodes from the node representation, which is a semi-supervised
step. In this chapter, all experiments in semi-supervised learning are set up the
same, including the division of the datasets and the number of trial repetitions.

Besides, to verify the generalizability of our approach, we also perform the graph
classification task on three undirected graph datasets in the experiments. The
definition and experiment setup are the same as for GRACE[228] and GCA [229].

99

https://github.com/flyingtango/DiGCL

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

5.4.1.2 Datasets and Splitting

We use several widely-used datasets including directed graph datasets: Cora-ML
[10], CiteSeer [144] and Am-Photo [145]; undirected graph datasets: PubMed
[121] and DBLP [127]. The split of the datasets would have a significant effect on
models’ results [145]. Thus, we divide the datasets randomly and conduct multiple
tests to achieve consistent outcomes. For train/validation/test split, following the
rules in GCN [88], we choose 20 labels per class for training set, 500 labels for
validation set, and rest for the test set.

Table 5.1: Datasets Details for Node Classification

Datasets Graph type Nodes Edges Classes Features Label rate

Cora-ML [10] Directed 2995 8416 7 2879 4.67%
CiteSeer [144] Directed 3312 4715 6 3703 3.62%
Am-Photo [145] Directed 7650 143663 8 745 2.10%
PubMed [121] Undirected 18230 79612 3 500 0.33%
DBLP [127] Undirected 17716 105734 4 1639 0.45%

We use five open access datasets in the task of node classification. Label rate is
the fraction of nodes in the training set per class. We use 20 labeled nodes per class
to calculate the label rate.

Besides, we use the following datasets for graph classification task: MUTAG
[91] containing mutagenic compounds, PTC [91] containing compounds tested for
carcinogenicity, and IMDB-Bin [202] connecting actors/actresses (nodes) based on
movie appearances (edges).

Table 5.2: Dataset Details for Graph Classification

Datasets Graphs Average nodes per graph Average edges per graph Classes

MUTAG 188 17.93 19.79 2
PTC 344 14.29 14.69 2
IMDB-Bin 1000 19.77 193.06 2

5.4.1.3 Baselines

We compare our model to the 11 SOTA models divided into four main categories:
1) supervised models for undirected graph with GCN [88], GAT [165] and [90];

100

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

2) supervised models for directed graph with MagNet [216] and DiGCN [160]; 3)
self-supervised models without augmentations including DGI [166] and GMI [133];
4) contrastive learning models containing MVGRL [57], GraphCL [207], GRACE
[228], and GCA [229]. The baseline methods are given below:

Table 5.3: The implementations of the baselines on the node classification task.

Model Training Type Implementation
GCN [88] Supervised

https://pyg.org/GAT [165] Supervised
APPNP [90] Supervised
MagNet [216] Supervised https://github.com/matthew-hirn/magnet

DiGCN [160] Supervised https://github.com/flyingtango/DiGCN

DGI [166] Self-supervised https://github.com/PetarV-/DGI

GMI [133] Self-supervised https://github.com/zpeng27/GMI

MVGRL [57] Self-supervised https://github.com/kavehhassani/mvgrl

GraphCL [207] Self-supervised https://github.com/Shen-Lab/GraphCL

GRACE [228] Self-supervised https://github.com/CRIPAC-DIG/GRACE

GCA [229] Self-supervised https://github.com/CRIPAC-DIG/GCA

For all baseline models, we use their model structure in the original papers, in-
cluding layer number, activation function selection, normalization and regularization
selection, etc. We implement GCN, GAT, and APPNP using PyG [40]. Note that
for DiGCN, we do not use its inception module but only use the directed graph
convolution. Detailed hyper-parameter settings are shown in Table 5.6.

To ensure the generality of the model, we have minimized the variation of hyper-
parameters. Our implementation is based on the GRACE code, with improvements
to the topological data augmentation and the model training scheme. For the
feature-level perturbation part, we also apply the dropping feature method used in
GCA, GRACE and MVGRL, with the same parameters as in GRACE. We initialize
our model with Glorot initialization [46] and use Adam optimizer [86] in all datasets.
The initial learning rate is set to 0.001 and the weight decay factor is set to 1e-5 on
all datasets. We set the number of layers used in the GCN encoder as 2. As stated
in Section 5.3.2, we fixed the initial and ending difficulty as 0.8 and 0 to obtain the
complete contrastive information. The detailed parameter settings are shown in

101

https://pyg.org/
https://github.com/matthew-hirn/magnet
https://github.com/flyingtango/DiGCN
https://github.com/PetarV-/DGI
https://github.com/zpeng27/GMI
https://github.com/kavehhassani/mvgrl
https://github.com/Shen-Lab/GraphCL
https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Table 5.4.

Table 5.4: The hyperparameters of our models.
Our models layer lr weight-decay hidden dim init ∆α end ∆α epochs
Cora-ML 2 0.001 1e-5 128 0.8 0 600
Citeseer 2 0.001 1e-5 128 0.8 0 300
AM-Photo 2 0.001 1e-5 512 0.8 0 2000
PubMed 2 0.001 1e-5 256 0.8 0 600
DBLP 2 0.001 1e-5 256 0.8 0 600

For the graph classification task, we follow the setting in the [57] and only change
the data augmentation and the pacing function. The hyperparameters are as follow.

Table 5.5: The hyperparameters on graph classification task.

Method Hyperparameters MUTAG PTC IMDB-Bin

MVGRL

layer 4 4 2
batches 256 128 256
epochs 20 20 20
α = 0.2 0.1 0.1 0.1

MVGRL+DiGCN

layer 4 4 2
batches 256 128 256
epochs 20 20 20

∆α 0.8→ 0 0.8→ 0 0.8→ 0

102

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Ta
bl
e
5.
6:

T
he

hy
pe

rp
ar
am

et
er
s
of

ba
se
lin

es
fo
r
no

de
cl
as
sifi

ca
tio

n
ta
sk
.

M
od

el
la
ye
r

lr
we

ig
ht
-d
ec
ay

hi
dd

en
di
m
en
sio

n
O
th
er
s

G
C
N

2
0.
01

5e
-4

64
-

G
AT

2
0.
00
5

5e
-4

C
or

a-
M

l
&

C
it

eS
ee

r:
8

ot
he
rs
:3
2

he
ad

s=
16

A
PP

N
P

2
0.
01

5e
-4

64
α

=
0.

1
M
ag
N
et

2
5e
-3

5e
-4

64
K

=
1,
q

=
0.

1
D
iG

C
N

2
0.
01

5e
-4

64
α

=
0.

1
D
G
I

1
0.
00
1

0
51
2

m
ax

-L
R
-it
er
=
15
0

G
M
I

1
0.
00
1

0
51
2

α
=

0.
8,
β

=
1,
γ

=
1

M
V
G
R
L

1
0.
00
1

0
51
2

α
=

0.
2,
t

=
5

G
ra
ph

C
L

1
0.
00
1

0
51
2

dr
op

ra
te
=
0.
2

G
R
A
C
E

2
0.
00
1

1e
-5

C
or

a-
M

l
&

C
it

eS
ee

r:
12
8

ot
he
rs
:2
56

au
gm

en
ta
tio

n
pa

ra
m
et
er
s
ar
e

co
ns
ist

en
t
w
ith

th
e
pa

pe
r

G
C
A

2
0.
00
1

1e
-5

C
or

a-
M

l
&

C
it

eS
ee

r:
12
8

ot
he
rs
:2
56

au
gm

en
ta
tio

n
pa

ra
m
et
er
s
ar
e

co
ns
ist

en
t
w
ith

th
e
pa

pe
r

103

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

5.4.2 Experimental Results

Accuracy of node classification. The performance comparisons between our
model and baselines models on five datasets are reported in Table 5.7. We use a
two-layer GCN as our encoder and first train our model in an unsupervised manner
to obtain the embedding. Then we take a simple `2-regularized logistic regression
as the classifier [166]. For curriculum learning scheme, we select the log pacing
function and the start and ending difficulties are set in Section 5.3.2. We train all
models according to their default settings, then calculate mean test accuracy with
standard deviation (STD) in percent (%) averaged over 20 random dataset splits
with random weight initialization.

It can be seen easily that our methods achieve the state-of-the-art results on all
datasets. In general, the unsupervised methods including MVGRL, GRACE, and
GCA, do not perform well on directed graphs compared to their good performance in
undirected graphs. This is mainly due to the models’ data augmentation methods are
not applicable to digaphs, resulting in the inability to learn contrastive information
from complex directed structures. Notice that GraphCL performs relatively mediocre
in unsupervised methods, most notably because it focuses mainly on graph-level
unsupervised methods, and does not apply well to node-level contrastive learning
task. Since DGI and GMI do not require data augmentation to provide contrastive
information, they perform very well on both undirected and directed graphs, which
shows good suitability for different graph structure. Moreover, supervised methods
such as GCN, GAT and APPNP are inferior to DiGCN and MagNet, which are
specifically designed for directed graphs, in terms of performance. Since our Laplacian
perturbation uses the approximate Laplacian matrix proposed by DiGCN, we
compare their performance. It is not difficult to find that our model outperforms
DiGCN on all datasets, which shows that contrastive learning can learn good
encoders by performing a certain data augmentation in an unsupervised manner.

104

CHAPTER 5. CONTRASTIVE GRAPH LEARNING
Ta

bl
e
5.
7:

A
cc
ur
ac
y
(%

)
of

no
de

cl
as
sifi

ca
tio

n
ta
sk

w
ith

ST
D
."
N
o
C
ur
r"

m
ea
ns

do
no

t
us
e
cu

rr
ic
ul
um

le
ar
ni
ng

an
d
we

se
t
tw

o
fix

ed
vi
ew

s
as

∆
α
a

=
∆
α
b

=
1
−
α
.
"R

an
do

m
"m

ea
ns

ra
nd

om
or
de
r,

"A
nt
iC

ur
r"

m
ea
ns

us
in
g
an

ti-
cu
rr
ic
ul
um

or
de
r
an

d
"C

ur
r"

in
di
ca
te
s
us
in
g
cu

rr
ic
ul
um

or
de

r.
T
he

be
st

re
su
lts

ar
e
hi
gh

lig
ht
ed

w
ith

bo
ld

an
d
th
e
se
co
nd

ar
e
m
ar
ke
d
w
ith

un
de
rli
ne

.
O
O
M

m
ea
ns

ou
t
of

m
em

or
y
on

a
12
G
B

G
PU

.

M
et
ho

d
D
IR

EC
T
ED

U
N
D
IR

EC
T
ED

C
or

a-
M

L
C

it
eS

ee
r

A
M

-P
ho

to
P

ub
M

ed
D

B
LP

SUPERVISED

G
C
N

[8
8]

70
.9

2
±

0.
39

63
.0

0
±

0.
45

88
.5

2
±

0.
47

78
.7

8
±

0.
30

73
.5

4
±

0.
77

G
AT

[1
65
]

72
.2

2
±

0.
57

63
.7

3
±

0.
57

88
.3

6
±

1.
25

77
.4

9
±

0.
47

76
.0

8
±

0.
54

A
PP

N
P

[9
0]

70
.3

1
±

0.
67

61
.6

3
±

0.
63

87
.4

3
±

0.
98

79
.3

5
±

0.
48

77
.9

2
±

0.
75

M
ag
N
et

[2
16
]

76
.3

2
±

0.
10

65
.0

4
±

0.
47

86
.8

0
±

0.
65

74
.2

3
±

0.
46

69
.7

3
±

0.
98

D
iG

C
N

[1
60
]

77
.0

3
±

0.
70

64
.6

0
±

0.
60

88
.6

6
±

0.
51

76
.7

9
±

0.
49

73
.3

7
±

0.
72

UNSUPERVISED

D
G
I[1

66
]

75
.2

1
±

1.
29

64
.5

8
±

1.
78

85
.2

5
±

0.
59

74
.1

1
±

0.
62

76
.5

3
±

1.
24

G
M
I[1

33
]

76
.5

9
±

0.
35

63
.2

9
±

0.
70

81
.1

2
±

0.
01

80
.2

7
±

0.
16

76
.6

6
±

0.
48

M
V
G
R
L[
57
]

76
.6

7
±

0.
12

62
.2

2
±

0.
02

86
.1

5
±

0.
21

79
.9

8
±

0.
04

O
O
M

G
ra
ph

C
L
[2
07
]

67
.3

4
±

0.
12

57
.8

4
±

0.
11

67
.6

6
±

0.
05

75
.2

9
±

0.
08

77
.8

5
±

0.
22

G
R
A
C
E

[2
28
]

73
.8

8
±

0.
25

61
.2

0
±

0.
20

87
.9

5
±

0.
32

79
.5

4
±

0.
05

78
.0

3
±

0.
09

G
C
A

[2
29
]

76
.3

2
±

0.
33

63
.2

5
±

0.
10

87
.3

5
±

0.
27

79
.8

1
±

0.
61

77
.8

3
±

0.
35

O
ur
s
+

N
o
C
ur
r

75
.8

6
±

0.
09

66
.9

9
±

0.
54

87
.3

2
±

0.
14

79
.5

7
±

0.
12

78
.2

8
±

0.
05

O
ur
s
+

R
an

do
m

76
.5

2
±

1.
66

67
.1

5
±

0.
82

89
.0

3
±

0.
46

80
.7

5
±

0.
10

79
.5

8
±

0.
14

O
ur
s
+

A
nt
iC

ur
r

76
.1

2
±

1.
04

66
.8

3
±

1.
13

88
.8

3
±

0.
73

80
.2

2
±

0.
37

79
.4

2
±

0.
15

O
ur
s
+

C
ur
r

77
.5

3
±

0.
14

67
.4

2
±

0.
14

89
.4

1
±

0.
11

80
.6

9
±

0.
08

79
.7

0
±

0.
13

105

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Ablation study on curriculum learning. We validate the effectiveness of
curriculum learning strategy and the results are shown in Table 5.7. We find that
even with the contrastive views containing the maximum information (with the
largest perturbation term), the effect of the model without curriculum learning
is significantly lower than the model with curriculum learning. This means that
features learned from fixed views is always incomplete. Besides, we also find that the
order of curriculum learning is vital, the ACC of learning from easy-to-difficult >
random order > difficult-to-easy. This substantially validates that scoring function
do help to learn from multiply tasks.

Impact of different pacing functions. We study the three different pacing
functions defined in Table 5.3 and the results in Figure 5.4(a) show that using
different path functions can have an impact on the performance but not as much as
changing the order of curriculum learning. Among them, the log pacing function
performs best as it speeds up learning on easy tasks and stays on harder tasks for
more epochs, thus helping the model to grasp the more subtle differences between
contrastive views.

(a) (b)

Figure 5.4: (a) node classification results with various pacing functions; (b) node
classification results for the generalizability of Laplacian perturbation on two datasets,
Lp means with Laplacian perturbation.

106

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Ta
bl
e
5.
8:

O
ve
ra
ll
ac
cu

ra
cy

(%
)
w
ith

ST
D

w
ith

va
rio

us
da

ta
au

gm
en
ta
tio

n
m
et
ho

ds
.
O
ur

m
od

el
us
es

cu
rr
ic
ul
um

le
ar
ni
ng

,a
nd

us
e
th
e
lo
g
pa

ci
ng

fu
nc
tio

n.
T
he

be
st

re
su
lts

ar
e
hi
gh

lig
ht
ed

w
ith

bo
ld
.

M
et
ho

ds
D
at
a
A
ug

m
en
ta
tio

n
M
et
ho

d
C

it
eS

ee
r

A
m

-P
ho

to
P

ub
M

ed

G
ra
ph

C
L
[2
07
]

Ed
ge

pe
rt
ur
ba

tio
n

57
.8

4
±

0.
11

67
.6

6
±

0.
05

75
.2

9
±

0.
09

N
od

e
dr
op

pi
ng

57
.4

5
±

0.
12

66
.6

9
±

0.
07

75
.2

5
±

0.
08

Su
bg

ra
ph

sa
m
pl
in
g

57
.5

9
±

0.
10

66
.7

5
±

0.
07

74
.7

5
±

0.
11

G
R
A
C
E

[2
28
]

R
an

do
m

re
m
ov

in
g
ed
ge
s

61
.2

0
±

0.
20

87
.9

5
±

0.
32

79
.5

4
±

0.
05

M
V
G
R
L
[5
7]

G
ra
ph

di
ffu

sio
n
w
ith

he
at

ke
rn
el

61
.2

2
±

0.
07

79
.6

3
±

0.
31

78
.5

4
±

0.
33

G
ra
ph

di
ffu

sio
n
w
ith

Pa
ge
R
an

k
ke
rn
el

62
.2

2
±

0.
02

86
.1

5
±

0.
21

79
.9

8
±

0.
04

G
C
A

[2
29
]

R
em

ov
in
g
ed
ge
s
by

de
gr
ee

sc
or
e

63
.2

5
±

0.
10

87
.3

5
±

0.
27

79
.8

1
±

0.
61

R
em

ov
in
g
ed
ge
s
by

Pa
ge
R
an

k
sc
or
e

62
.2

1
±

0.
16

86
.8

8
±

0.
37

78
.9

2
±

0.
37

R
em

ov
in
g
ed
ge
s
by

ei
ge
nv

al
ue

sc
or
e

63
.1

2
±

0.
08

87
.0

2
±

0.
56

79
.7

0
±

0.
09

O
ur
s

R
an

do
m

re
m
ov

in
g
ed
ge
s

64
.9

7
±

0.
08

88
.4

5
±

0.
01

79
.6

6
±

0.
13

La
pl
ac
ia
n
pe

rt
ur
ba

tio
n

67
.4

2
±

0.
14

89
.4

1
±

0.
11

80
.6

9
±

0.
08

107

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Effect of Laplacian perturbation and other data augmentation meth-
ods. Table 5.8 shows the effect of the different data augmentation methods on
the five contrastive learning models. We our Laplacian perturbation works best
on both directed and undirected graphs. But the difference with other methods
is not significant on the undirected graph dataset PubMed. In addition to this,
we also compare with random removing edges used in GRACE under our DiGCL
framework. We find that the data augmentation approach without damaging the
graph structure can achieve better performance.

Generalization of Laplacian perturbation. Here, we will add generalizabil-
ity experiments that migrate Laplacian perturbation to MVGRL [57] and GCA [229].
We replace the topological data augmentation method in the original model with
our Laplacian perturbation and follow all the configurations in the original model,
including the parameters of the data augmentation, the number of contrastive views,
the structure of the model, and the training parameters. We test the generalization
performance of our Laplacian perturbation in the node classification task. The
results are shown in Figure 5.4(b). We can clearly find that the performance of
the model on directed graphs can be improved after using Laplacian perturbation,
which indicates that our method can help existing contrastive learning models to
learn structure information from complex networks.

(a) (b)

Figure 5.5: (a) perturbation error with various perturbation terms ∆α; (b) time of
different data augmentation methods on random graphs with different size.

108

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

Monotonicity of the perturbation error in real-world datasets. To
visualize the variation of the perturbation error with the perturbation term, we
empirically show the variation of directed graph entropy in the three real-world
directed graph datasets: Cora-ML, Citeseer and AM-Photo. We set α = 0.1
and take ∆α ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.85, 0.89}. The results are shown in
Figure 5.5(a), and it is clearly shown that as the perturbation term increases, the
degree of perturbation is elevated, and the perturbation error will increase.

Augmentation time at different graph scales. We construct 20 random
directed graphs of different scales, with the number of edges ranging from 1K to
2M, then test four different data augmentation methods’ mean running time in
milliseconds (ms) for 5 times. Figure 5.5(b) summarizes the results and shows that
our Laplacian perturbation is very competitive in terms of runtime among these
methods. In contrast to the graph diffusion, which also require the computation
of eigenvectors, we can reduce the time by a factor of one hundred with our fast
algorithm proposed in Section 5.2.2. This makes it possible to dynamically perform
Laplacian perturbation to generate contrastive views during training.

(a) (b)

Figure 5.6: (a) running time per epoch of different models on random size graphs,
OOM means out of memory; (b) generalization experiment of graph classification
task based on MVGRL.

Running time with different graph size. To generate arbitrary graph size,
we construct a simple random graph with N nodes and assign 10N directed edges
uniformly at random. We compare with GRACE[228] and GCA [229] since these two

109

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

models have the similar accuracy with ours. We record the running time of the models
for each epoch at different graph sizes, and the results are shown in Figure 5.6(a).
We can find that processing 20,000 nodes and 200,000 edges with 12 GB memory is
the limit for these three models. Since our model requires a Laplacian perturbation
operation, this will take more time than the data augmentation performed by GCA
and GRACE.

Generalization to graph classification task. To validate the generalization
ability of our DiGCL model, we migrate it to MVGRL [57] and test on three
graph classification datasets: MUTAG [91], PTC [91], and IMDB-Bin [202]. The
generalized MVGRL model is denoted by MVGRL+DiGCL and the results are
shown in Figure 5.6(b). Using our model can improve the accuracy on all datasets,
however, the improvement is not significant. We consider there are three main
potential reasons for this: 1) the datasets are undirected graphs, and the effect of
using Laplacian perturbation on them is not as obvious as in directed graphs; 2) the
graph classification problem requires more graph-level contrastive information, while
our model focuses on node-level; 3) our scoring function designed for node-level
curriculum learning is not suitable for graph-level difficulty measure.

Figure 5.7: (a) performance of node classification task on Cora-ML with different
pacing functions; (b) performance of node classification task on AM-Photo with
different pacing functions.

Accuracy with epoch for different pacing functions. First, we give the
results of the val accuracy changes with three different pacing functions in Cora-ML
and AM-Photo in Figure 5.7(a) and 5.7(b) separately. We can find that different
pacing functions perform differently at different training stages. Linear performs

110

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

evenly throughout the training process; Exp improves faster at the beginning of
training, but plateaus in the later stages; Log improves slowly at the beginning of
training, but it continues to improve and achieves the best results at the end of
training. The main reason is the log pacing function speeds up learning on easy
tasks and stays on harder tasks for more epochs, helping the model to grasp the
more subtle differences between contrastive views. This is the cause of its ability to
consistently improve his performance in the later stages.

Figure 5.8: Validation accuracy of node classification task with different perturbation
terms. The shade of the color represents the accuracy, with lighter shades indicating
higher accuracy.

Sensitivity analysis for initial and ending difficulty. Recalling the analysis
in Section 5.3.2, to obtain comprehensive contrastive information on the one hand,
and to reduce the need for hyperparameters on the other hand, we set the initial per-
turbation term ∆αa to 0.8 and the ending perturbation term ∆αb to 0. In this exper-
iment, we will explore the effect of different initial and ending difficulties on the accu-
racy of the model. We traverse the ∆αa,∆αb ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
and make sure ∆αa > ∆αb (∆αa = ∆αb is equivalent to fixed view contrastive
learning). We use two datasets and three pacing functions in the experiment. The
results are shown in Figure 5.8. We can clearly find that setting the perturbation

111

CHAPTER 5. CONTRASTIVE GRAPH LEARNING

terms as the boundary values allows the model to learn all views as much as possible,
thus improving the performance. Also, comparing the results of Log, Liner, and
Exp, we can find that using log as the pacing function can get more stable and
accurate results.

From these experiments, we can draw a few empirical conclusions as follows.

• Log-based pacing function performs the best of the three pacing functions, but
not too far from the other two pacing functions.

• The best results are obtained by setting the start and end points to be the
boundary points of the Laplacian perturbation parameter space.

• The order in which the views are learned is crucial, with contrastive views
working best from easy to difficult (Concluded from Table 5.7).

For the starting and ending difficulty scores, in accordance with the second
conclusion, we consider that it is better to take the boundary values, which are
effective and do not require parameter selection. For the type of pacing functions,
according to the first and third conclusions, the different pacing functions have an
impact on the results of the model but are not as important as the learning order.
We believe that any pacing functions that satisfy the order of easy to difficult can
be chosen.

5.5 Summary
In this chapter, we design a directed graph data augmentation scheme called

Laplacian perturbation and theoretically investigate how it can provide contrastive
information without changing the directed graph structure. Moreover, we present
the DiGCL which utilizes Laplacian perturbation and curriculum learning to pro-
gressively learn from dynamic easy-to-difficult contrastive views. Finally, we use
several tasks on various datasets to demonstrate the effectiveness and generaliza-
tion ability of our proposed DiGCL. We empirically show that DiGCL can retain
more structural features of directed graphs than other GCL models while providing
adequate contrastive information. Extensive experiments show that our DiGCL
outperforms the state-of-the-art approaches.

112

CHAPTER 6. CONCLUSION AND FUTURE WORK

Chapter 6

Conclusion and Future Work

This chapter provides a thorough conclusion for the thesis, followed by discussions
of the future works.

6.1 Conclusion
Graph-structured data is ubiquitous, ranging from social relationships to urban

road networks. It records the connections between entities with an efficient data
structure. How to make good use of the large-scale graph structure data that
contains information is the direction that people are looking for. Deep learning
is one type of learning method. By designing a deep neural network suitable for
graph-structured data, we can efficiently collect node, edge, and graph-level features
from graph data, so as to facilitate us to solve related real-world problems. This
thesis is small while a concrete step towards this grand subject, deep learning on
graph-structured data.

In this thesis, we focus on extending the application of deep graph neural networks
to directed graphs. In the first part of this thesis (Chatper 1), we introduce deep
learning and some real-world problems addressed using deep graph neural networks.
At the same time, according to the issue that existing graph deep learning methods
cannot be used in directed graphs, we propose some directions. for improvement
and explain our motivations. Based on these directions where improvements can be
made, we present the main objectives and contributions of this paper.

In Chapter 2, we provide a comprehensive overview of Graph Neural Networks.
We begin with the overall design process of GNNs and summarize the tasks associated
with the various modules. In addition, we provide a summary of the pros and cons

113

CHAPTER 6. CONCLUSION AND FUTURE WORK

of various strategies and address the flaws of existing work on directed graphs.
Moreover, we provide an in-depth analysis of the work in the fields of Graph
Convolutional Networks and Graph Contrastive Learning, which are closely related
to later chapters, as well as some preliminaries.

In Chapter 3, we introduce Directed Graph Convolution Networks (DGCN),
a novel graph neural network that can be applied to directed graphs. To en-
able spectral-based GCNs to generalize to directed graphs, we define first- and
second-order proximity. It can keep graph’s directed characteristics and enlarge the
convolution operation’s receptive field in order to extract and exploit nearby node
features. In addition, we provide empirical evidence that this strategy increases the
quantity and quality of the information obtained. Finally, we apply semi-supervised
node classification tasks and extensive tests on numerous real-world datasets to
demonstrate the efficacy and generalization capabilities of first- and second-order
proximity, as well as the enhancements acquired by DGCN over other models.

In Chapter 4, we present Directed Graph Inception Convolutional Networks
(DiGCN), which can be effectively learn directed graph representation. We theoreti-
cally extend spectral-based graph convolution to directed graph using the inherent
connections between graph Laplacian and stationary distributions of PageRank. We
further simplified it to optimizate propagation speed and memory usage. Besides,
we define kth-order proximity and design the directed graph inception networks to
learn multi-scale features. This simple and scalable model can not only learn di-
rected graph structure, but also get hidden information through kth-order proximity
relationship. Finally, we utilize a number of tasks on a range of real-world datasets
to verify our model’s performance and generalizability. The results show that our
model outperforms several state-of-the-art methods.

In Chapter 5, we construct the Laplacian perturbation data augmentation strat-
egy for directed graphs and study how it can give contrastive information without
altering the directed graph’s structure. Moreover, we present the Directed Graph
Contrastive Learning (DiGCL) which utilizes Laplacian perturbation and curriculum
learning to progressively learn from dynamic easy-to-difficult contrastive views. Fi-
nally, we perform a number of tasks across a range of datasets to showcase the efficacy
and generalizability of our proposed method. Through extensive experimentation,
we demonstrate that DiGCL is superior to competing GCL models in its ability

114

CHAPTER 6. CONCLUSION AND FUTURE WORK

to preserve critical structural aspects of directed graphs while still yielding useful
contrasting information. Compared to the state-of-the-art methods, our DiGCL
performs significantly better in extensive experiments.

By means of the presented studies, we have demonstrated the efficacies brought
by deep learning on graph-structured data, especially on directed graph. In the
future, we would like to transfer the experience that we learned to address directed
graph problems from various perspectives.

6.2 Future Work
There are many potential directions to further explore on the topics studied in

this thesis. We discuss some possible future work below.
Multi-level Tasks. As elaborated in Section 5.2.1 and 5.4.2, our approach is

more suitable for obtaining node-level contrastive information. This limits us to
use the model to solve some graph-level problems, such as pre-training on protein
molecular, drug property prediction, etc. We will extend our approach to graph-level
tasks in subsequent work. Besides, it is also worth exploring the direction of how
to combine multi-scale information, such as combining node-level and graph-level
information [110], to solve multi-level graph tasks.

Robustness. As a family of neural network based models, GNNs are also
vulnerable to adversarial attacks. Compared to adversarial attacks on images or
text which only focuses on features, attacks on graphs further consider the graph
structural information [152]. Our models may be adversarial attacked by adding
new nodes or deleting existing edges. For example, in a graph-based recommender
system, our model may produce completely different recommendation results due to
being attacked. Several efforts have been proposed to attack existing graph models
[232, 27], while more robust models [224] have been presented to protect against
these attacks. As a follow-up work we can explore the unique structural attack
methods and defenses on directed graphs.

Large-scale Graphs. Real-world graphs are all very large in size, and due to
the complex dependencies between nodes, the computational cost and memory space
requirements increase exponentially as the number of GNN layers increases [115].
For example, Facebook’s social network graph contains over 2 billion vertices and

115

CHAPTER 6. CONCLUSION AND FUTURE WORK

1 trillion edges. Our model is not optimized for large-scale directed graphs, which
may lead to insufficient memory or slow speed during training. How to efficiently
sample and learn on large-scale directed graphs is also a pressing problem.

Dynamic Graphs. Mainstream research is limited to dealing with static graph
data, while most of the real complex networks evolve in structure and properties
over time [131]. Dynamic graph models add a temporal dimension to static graph
models, enabling them to characterize both structural and temporal information of
complex systems [148]. Dynamic graphs differ from static graphs in that the former
have 1) dynamic structure, where connected edges and nodes disappear/appear over
time, and 2) dynamic properties, where nodes and connected edge states change
over time. In the subsequent work, we can migrate our static directed graph-based
approach to dynamic graphs.

116

PUBLICATIONS DURING PHD STUDY

Publications during PhD Study

[1] Z. Tong, Y. Liang, C. Sun, X. Li, and Y. M. Chee, “Second-order directed
graph convolutional network”, Working paper, 2022.

[2] Z. Tong, Y. Liang, H. Ding, Y. Dai, X. Li, and C. Wang, “Directed graph
contrastive learning”, Advances in Neural Information Processing Systems,
vol. 34, 2021.

[3] Z. Tong, Y. Liang, C. Sun, X. Li, D. Rosenblum, and A. Lim, “Digraph
inception convolutional networks”, Advances in Neural Information Processing
Systems, vol. 33, 2020.

[4] Z. Tong, Y. Liang, C. Sun, D. S. Rosenblum, and A. Lim, “Directed graph
convolutional network”, arXiv preprint arXiv:2004.13970, 2020.

[5] Y. Dai, Y. Sun, J. Liu, Z. Tong, Y. Yang, and L.-Y. Duan, “Bridging the
source-to-target gap for cross-domain person re-identification with intermedi-
ate domains”, arXiv preprint arXiv:2203.01682, 2022.

[6] X. Li, H. Ding, Z. Tong, Y. Wu, and Y. M. Chee, “Primtive3d: 3d object
dataset synthesis from randomly assembled primitives”, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[7] Y. Dai, J. Liu, Y. Bai, Z. Tong, and L.-Y. Duan, “Dual-refinement: Joint
label and feature refinement for unsupervised domain adaptive person re-
identification”, IEEE Transactions on Image Processing, vol. 30, pp. 7815–
7829, 2021.

[8] X. Li, Z. Chen, Y. Zhao, Z. Tong, Y. Zhao, A. Lim, and J. T. Zhou,
“Pointba: Towards backdoor attacks in 3d point cloud”, in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Oct.
2021, pp. 16 492–16 501.

117

PUBLICATIONS DURING PHD STUDY

[9] Y. Dai, J. Liu, Y. Sun, Z. Tong, C. Zhang, and L.-Y. Duan, “Idm: An
intermediate domain module for domain adaptive person re-id”, in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 11 864–11 874.

[10] Y. Dai, X. Li, J. Liu, Z. Tong, and L.-Y. Duan, “Generalizable person
re-identification with relevance-aware mixture of experts”, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 16 145–16 154.

[11] X. Li, C. Li, Z. Tong, A. Lim, J. Yuan, Y. Wu, J. Tang, and R. Huang,
“Campus3d: A photogrammetry point cloud benchmark for hierarchical un-
derstanding of outdoor scene”, in Proceedings of the 28th ACM International
Conference on Multimedia, 2020, pp. 238–246.

[12] Y. Liang, K. Ouyang, H. Yan, Y. Wang, Z. Tong, and R. Zimmermann,
“Modeling trajectories with neural ordinary differential equations”, in Proceed-
ings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, 2021, pp. 1498–1504.

[13] K. Ouyang, Y. Liang, Y. Liu, Z. Tong, S. Ruan, D. Rosenblum, and Y. Zheng,
“Fine-grained urban flow inference”, IEEE Transactions on Knowledge and
Data Engineering, 2020.

118

BIBLIOGRAPHY

Bibliography
[1] S. Abu-El-Haija, A. Kapoor, B. Perozzi, and J. Lee, “N-gcn: Multi-scale

graph convolution for semi-supervised node classification”, arXiv preprint
arXiv:1802.08888, 2018.

[2] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolu-
tional neural network”, in 2017 international conference on engineering and
technology (ICET), Ieee, 2017, pp. 1–6.

[3] S. Back, J. Yoon, N. Tian, W. Zhong, K. Tran, and Z. W. Ulissi, “Convolu-
tional neural network of atomic surface structures to predict binding energies
for high-throughput screening of catalysts”, The journal of physical chemistry
letters, vol. 10, no. 15, pp. 4401–4408, 2019.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate”, arXiv preprint arXiv:1409.0473, 2014.

[5] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and personalized
pagerank”, arXiv preprint arXiv:1006.2880, 2010.

[6] L. Bai, L. Yao, S. Kanhere, X. Wang, Q. Sheng, et al., “Stg2seq: Spatial-
temporal graph to sequence model for multi-step passenger demand forecast-
ing”, arXiv preprint arXiv:1905.10069, 2019.

[7] G. Barker and H. Schneider, “Algebraic perron-frobenius theory”, Linear
Algebra and its Applications, vol. 11, no. 3, pp. 219–233, 1975.

[8] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing”, in Proceedings of the 26th annual international conference on machine
learning, 2009, pp. 41–48.

[9] S. Berrone, F. Della Santa, A. Mastropietro, S. Pieraccini, and F. Vaccarino,
“Graph-informed neural networks for regressions on graph-structured data”,
Mathematics, vol. 10, no. 5, p. 786, 2022.

119

BIBLIOGRAPHY

[10] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of attributed
graphs: Unsupervised inductive learning via ranking”, arXiv:1707.03815,
2017.

[11] A. Bojchevski, J. Klicpera, B. Perozzi, M. Blais, A. Kapoor, M. Lukasik, and
S. Günnemann, “Is pagerank all you need for scalable graph neural networks?”
In KDD, MLG Workshop, 2019.

[12] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual
web search engine”, Computer networks, vol. 56, no. 18, pp. 3825–3833, 2012.

[13] M. Chatzianastasis, G. Dasoulas, G. Siolas, and M. Vazirgiannis, “Graph-
based neural architecture search with operation embeddings”, in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 393–402.

[14] C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong, “Graph networks as a
universal machine learning framework for molecules and crystals”, Chemistry
of Materials, vol. 31, no. 9, pp. 3564–3572, 2019.

[15] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional
networks with variance reduction”, arXiv preprint arXiv:1710.10568, 2017.

[16] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph convolutional
networks via importance sampling”, arXiv preprint arXiv:1801.10247, 2018.

[17] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs”, IEEE transactions on pattern analysis
and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[18] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu, “Svdfeature: A
toolkit for feature-based collaborative filtering”, Journal of Machine Learning
Research, vol. 13, pp. 3619–3622, 2012.

[19] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations”, arXiv preprint arXiv:2002.05709,
2020.

120

BIBLIOGRAPHY

[20] Z. Chen, F. Chen, L. Zhang, T. Ji, K. Fu, L. Zhao, F. Chen, and C.-T. Lu,
“Bridging the gap between spatial and spectral domains: A survey on graph
neural networks”, arXiv preprint arXiv:2002.11867, 2020.

[21] D. Cheng, Y. Tu, Z.-W. Ma, Z. Niu, and L. Zhang, “Risk assessment for
networked-guarantee loans using high-order graph attention representation.”
In IJCAI, 2019, pp. 5822–5828.

[22] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional
networks”, in Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, 2019, pp. 257–266.

[23] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches”, arXiv preprint
arXiv:1409.1259, 2014.

[24] F. Chung, “Laplacians and the cheeger inequality for directed graphs”, Annals
of Combinatorics, vol. 9, no. 1, pp. 1–19, 2005.

[25] F. R. Chung, “Spectral graph theory”, American Mathematical Soc., 1997,
vol. 92.

[26] M. Cucuringu, H. Li, H. Sun, and L. Zanetti, “Hermitian matrices for cluster-
ing directed graphs: Insights and applications”, in International Conference
on Artificial Intelligence and Statistics, PMLR, 2020, pp. 983–992.

[27] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial
attack on graph structured data”, in International conference on machine
learning, PMLR, 2018, pp. 1115–1124.

[28] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering”, in NIPS, 2016,
pp. 3844–3852.

[29] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings”, in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

121

BIBLIOGRAPHY

[30] Y. Ding, L.-P. Tian, X. Lei, B. Liao, and F.-X. Wu, “Variational graph
auto-encoders for mirna-disease association prediction”, Methods, vol. 192,
pp. 25–34, 2021.

[31] L. Dudziak, T. Chau, M. Abdelfattah, R. Lee, H. Kim, and N. Lane, “Brp-nas:
Prediction-based nas using gcns”, Advances in Neural Information Processing
Systems, vol. 33, pp. 10 480–10 490, 2020.

[32] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for
learning molecular fingerprints”, Advances in neural information processing
systems, vol. 28, 2015.

[33] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Bench-
marking graph neural networks”, arXiv preprint arXiv:2003.00982, 2020.

[34] C. Engström and S. Silvestrov, “Pagerank for networks, graphs, and markov
chains”, Theory of Probability and Mathematical Statistics, vol. 96, pp. 59–82,
2018.

[35] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of graph
neural networks for graph classification”, arXiv preprint arXiv:1912.09893,
2019.

[36] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural
networks for social recommendation”, in The world wide web conference, 2019,
pp. 417–426.

[37] Q. Feng, E. Dueva, A. Cherkasov, and M. Ester, “Padme: A deep learning-
based framework for drug-target interaction prediction”, arXiv preprint
arXiv:1807.09741, 2018.

[38] M. Fey, “Just jump: Dynamic neighborhood aggregation in graph neural
networks”, arXiv preprint arXiv:1904.04849, 2019.

[39] M. Fey, J. E. Lenssen, C. Morris, J. Masci, and N. M. Kriege, “Deep graph
matching consensus”, arXiv preprint arXiv:2001.09621, 2020.

[40] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch
Geometric”, in ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

122

BIBLIOGRAPHY

[41] H. Gao and S. Ji, “Graph u-nets”, in international conference on machine
learning, PMLR, 2019, pp. 2083–2092.

[42] X. Geng, X. Wu, L. Zhang, Q. Yang, Y. Liu, and J. Ye, “Multi-modal graph
interaction for multi-graph convolution network in urban spatiotemporal
forecasting”, arXiv preprint arXiv:1905.11395, 2019.

[43] M. Ghorbani, M. S. Baghshah, and H. R. Rabiee, “Mgcn: Semi-supervised
classification in multi-layer graphs with graph convolutional networks”, in
Proceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, 2019, pp. 208–211.

[44] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry”, in International conference on
machine learning, PMLR, 2017, pp. 1263–1272.

[45] D. Gleich, “Hierarchical directed spectral graph partitioning”, Information
Networks, 2006.

[46] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, in Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 249–256.

[47] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks”, arXiv
preprint arXiv:1406.2661, 2014.

[48] M. Granovetter, “The strength of weak ties: A network theory revisited”,
Sociological theory, pp. 201–233, 1983.

[49] R. Grone and R. Merris, “The laplacian spectrum of a graph ii”, SIAM
Journal on discrete mathematics, vol. 7, no. 2, pp. 221–229, 1994.

[50] G. H. Gu, J. Noh, S. Kim, S. Back, Z. Ulissi, and Y. Jung, “Practical
deep-learning representation for fast heterogeneous catalyst screening”, The
Journal of Physical Chemistry Letters, vol. 11, no. 9, pp. 3185–3191, 2020.

[51] H. Guo, R. Pasunuru, and M. Bansal, “Autosem: Automatic task selection
and mixing in multi-task learning”, arXiv preprint arXiv:1904.04153, 2019.

123

BIBLIOGRAPHY

[52] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic task pri-
oritization for multitask learning”, in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 270–287.

[53] Z. Guo, Y. Zhang, andW. Lu, “Attention guided graph convolutional networks
for relation extraction”, arXiv preprint arXiv:1906.07510, 2019.

[54] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs”, in NIPS, 2017, pp. 1024–1034.

[55] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory”, Applied and Computational Harmonic Analysis,
vol. 30, no. 2, pp. 129–150, 2011.

[56] A. Hasanzadeh, E. Hajiramezanali, K. Narayanan, N. Duffield, M. Zhou, and
X. Qian, “Semi-implicit graph variational auto-encoders”, Advances in neural
information processing systems, vol. 32, 2019.

[57] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation
learning on graphs”, arXiv preprint arXiv:2006.05582, 2020.

[58] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for un-
supervised visual representation learning”, arXiv preprint arXiv:1911.05722,
2019.

[59] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn”, in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 2961–2969.

[60] Y. He, G. Reinert, and M. Cucuringu, “Digrac: Digraph clustering based on
flow imbalance”, arXiv preprint arXiv:2106.05194, 2021.

[61] Y. He, X. Zhang, J. Huang, M. Cucuringu, and G. Reinert, “Pytorch geometric
signed directed: A survey and software on graph neural networks for signed
and directed graphs”, arXiv preprint arXiv:2202.10793, 2022.

[62] S. Heindorf, Y. Scholten, H. Wachsmuth, A.-C. Ngonga Ngomo, and M.
Potthast, “Causenet: Towards a causality graph extracted from the web”,
in Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, 2020, pp. 3023–3030.

124

BIBLIOGRAPHY

[63] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-
structured data”, arXiv preprint arXiv:1506.05163, 2015.

[64] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks”, science, vol. 313, no. 5786, pp. 504–507, 2006.

[65] R. Hisano, “Semi-supervised graph embedding approach to dynamic link
prediction”, in International workshop on complex networks, Springer, 2018,
pp. 109–121.

[66] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization”, arXiv preprint arXiv:1808.06670,
2018.

[67] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph
convolutional networks for hyperspectral image classification”,, 2020.

[68] R. Horaud, “A short tutorial on graph laplacians, laplacian embedding,
and spectral clustering”, URl: http://csustan. csustan. edu/˜ tom/Lecture-
Notes/Clustering/GraphLaplacian-tutorial. pdf, 2009.

[69] Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. B. Ma, H. Chen, and M.-C. Yang,
“Measuring and improving the use of graph information in graph neural
networks”, in ICLR, 2020.

[70] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J.
Leskovec, “Open graph benchmark: Datasets for machine learning on graphs”,
Advances in neural information processing systems, vol. 33, pp. 22 118–22 133,
2020.

[71] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks”, arXiv preprint arXiv:1905.12265,
2019.

[72] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn: Generative
pre-training of graph neural networks”, in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 1857–1867.

125

BIBLIOGRAPHY

[73] Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun, “Pre-training graph
neural networks for generic structural feature extraction”, arXiv preprint
arXiv:1905.13728, 2019.

[74] L. Huang, D. Ma, S. Li, X. Zhang, and H. Wang, “Text level graph neural
network for text classification”, arXiv preprint arXiv:1910.02356, 2019.

[75] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning”, Advances in neural information processing
systems, vol. 31, 2018.

[76] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis, “Graph neural networks
for predicting protein functions”, in 2019 IEEE 8th International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
IEEE, 2019, pp. 221–225.

[77] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, “A
survey on contrastive self-supervised learning”, Technologies, vol. 9, no. 1,
p. 2, 2020.

[78] G. Jeh and J. Widom, “Scaling personalized web search”, in Proceedings of
the 12th international conference on World Wide Web, 2003, pp. 271–279.

[79] Q. Ji, E. Bouri, R. Gupta, and D. Roubaud, “Network causality structures
among bitcoin and other financial assets: A directed acyclic graph approach”,
The Quarterly Review of Economics and Finance, vol. 70, pp. 203–213, 2018.

[80] S. Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, and Y. Gao, “Dual channel hy-
pergraph collaborative filtering”, in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020,
pp. 2020–2029.

[81] W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang, “Self-
supervised learning on graphs: Deep insights and new direction”, arXiv
preprint arXiv:2006.10141, 2020.

[82] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks”, in Proceedings of the 14th ACM
international conference on web search and data mining, 2021, pp. 148–156.

126

BIBLIOGRAPHY

[83] N. Jovanović, Z. Meng, L. Faber, and R. Wattenhofer, “Towards robust graph
contrastive learning”, arXiv preprint arXiv:2102.13085, 2021.

[84] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, and E. P. Xing,
“Rethinking knowledge graph propagation for zero-shot learning”, in CVPR,
2019, pp. 11 487–11 496.

[85] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural net-
work for few-shot learning”, in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 11–20.

[86] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
Third ICLR, 2015.

[87] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational
inference for interacting systems”, in International Conference on Machine
Learning, PMLR, 2018, pp. 2688–2697.

[88] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks”, arXiv preprint arXiv:1609.02907, 2016.

[89] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment”, Jour-
nal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[90] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank”, arXiv preprint arXiv:1810.05997,
2018.

[91] N. Kriege and P. Mutzel, “Subgraph matching kernels for attributed graphs”,
arXiv preprint arXiv:1206.6483, 2012.

[92] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks”, Advances in neural information
processing systems, vol. 25, 2012.

[93] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[94] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling”, in International
conference on machine learning, PMLR, 2019, pp. 3734–3743.

127

BIBLIOGRAPHY

[95] B. Li, W. Ye, Z. Sheng, R. Xie, X. Xi, and S. Zhang, “Graph enhanced dual
attention network for document-level relation extraction”, in Proceedings of
the 28th international conference on computational linguistics, 2020, pp. 1551–
1560.

[96] C. Li, J. Yan, F. Wei, W. Dong, Q. Liu, and H. Zha, “Self-paced multi-task
learning”, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, 2017.

[97] G. Li, M. Müller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go as
deep as cnns?” arXiv preprint arXiv:1904.03751, 2019.

[98] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang, “Semi-
supervised graph classification: A hierarchical graph perspective”, in The
World Wide Web Conference, 2019, pp. 972–982.

[99] J. Li, H. Ma, Z. Zhang, and M. Tomizuka, “Social-wagdat: Interaction-aware
trajectory prediction via wasserstein graph double-attention network”, arXiv
preprint arXiv:2002.06241, 2020.

[100] Q. Li, X.-M. Wu, H. Liu, X. Zhang, and Z. Guan, “Label efficient semi-
supervised learning via graph filtering”, in CVPR, 2019, pp. 9582–9591.

[101] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional neural
networks”, in AAAI, 2018.

[102] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching networks
for learning the similarity of graph structured objects”, in International
conference on machine learning, PMLR, 2019, pp. 3835–3845.

[103] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel, “Lanczosnet: Multi-scale deep
graph convolutional networks”, arXiv preprint arXiv:1901.01484, 2019.

[104] Z.-H. Lin, S.-Y. Huang, and Y.-C. F. Wang, “Convolution in the cloud:
Learning deformable kernels in 3d graph convolution networks for point cloud
analysis”, in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 1800–1809.

[105] C. Liu and Y. Li, “A parallel pagerank algorithm with power iteration
acceleration”, International Journal of Grid and Distributed Computing,
vol. 8, no. 2, pp. 273–284, 2015.

128

BIBLIOGRAPHY

[106] X. Liu, Y. Luo, S. Song, and J. Peng, “Pre-training of graph neural network
for modeling effects of mutations on protein-protein binding affinity”, arXiv
preprint arXiv:2008.12473, 2020.

[107] X. Liu, X. You, X. Zhang, J. Wu, and P. Lv, “Tensor graph convolutional
networks for text classification”, in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, 2020, pp. 8409–8416.

[108] X. Liu, Y. Liang, Y. Zheng, B. Hooi, and R. Zimmermann, “Spatio-temporal
graph contrastive learning”, arXiv preprint arXiv:2108.11873, 2021.

[109] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. Yu, “Graph
self-supervised learning: A survey”, IEEE Transactions on Knowledge and
Data Engineering, 2022.

[110] Y. Lu, X. Jiang, Y. Fang, and C. Shi, “Learning to pre-train graph neural
networks”, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 4276–4284.

[111] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation”, arXiv preprint arXiv:1508.04025,
2015.

[112] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional networks
with eigenpooling”, in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 723–731.

[113] Y. Ma, J. Hao, Y. Yang, H. Li, J. Jin, and G. Chen, “Spectral-based graph
convolutional network for directed graphs”, arXiv preprint arXiv:1907.08990,
2019.

[114] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne”, Journal of
machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[115] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke, D. Kalamkar,
N. K. Ahmed, and S. Avancha, “Distgnn: Scalable distributed training for
large-scale graph neural networks”, in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–14.

129

BIBLIOGRAPHY

[116] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A social
spatio-temporal graph convolutional neural network for human trajectory
prediction”, in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 14 424–14 432.

[117] C. B. Moler, “Experiments with MATLAB”, Society for Industrial and
Applied Mathematics, 2011.

[118] F. Monti, K. Otness, and M. M. Bronstein, “Motifnet: A motif-based graph
convolutional network for directed graphs”, in IEEE DSW, IEEE, 2018,
pp. 225–228.

[119] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural
networks”, in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, 2019, pp. 4602–4609.

[120] K. Murugesan and J. Carbonell, “Self-paced multitask learning with shared
knowledge”, arXiv preprint arXiv:1703.00977, 2017.

[121] G. Namata, B. London, L. Getoor, B. Huang, and U. EDU, “Query-driven
active surveying for collective classification”, in 10th International Workshop
on Mining and Learning with Graphs, vol. 8, 2012.

[122] J. R. Norris and J. R. Norris, “Markov chains”, 2. Cambridge university press,
1998.

[123] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding”, arXiv preprint arXiv:1807.03748, 2018.

[124] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[125] A. Palizhati, W. Zhong, K. Tran, S. Back, and Z. W. Ulissi, “Toward predicting
intermetallics surface properties with high-throughput dft and convolutional
neural networks”, Journal of chemical information and modeling, vol. 59,
no. 11, pp. 4742–4749, 2019.

[126] W. R. Palmer and T. Zheng, “Spectral clustering for directed networks”,
in International Conference on Complex Networks and Their Applications,
Springer, 2020, pp. 87–99.

130

BIBLIOGRAPHY

[127] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation”, Network, vol. 11, no. 9, p. 12, 2016.

[128] X. Pan and H.-B. Shen, “Inferring disease-associated micrornas using semi-
supervised multi-label graph convolutional networks”, Iscience, vol. 20, pp. 265–
277, 2019.

[129] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, and C. E. Leisersen, “Evolvegcn: Evolving graph convolutional
networks for dynamic graphs”, arXiv preprint arXiv:1902.10191, 2019.

[130] S. Park, W. Lee, B. Choe, and S.-G. Lee, “A survey on personalized pagerank
computation algorithms”, IEEE Access, vol. 7, pp. 163 049–163 062, 2019.

[131] H. Peng, H. Wang, B. Du, M. Z. A. Bhuiyan, H. Ma, J. Liu, L. Wang, Z.
Yang, L. Du, S. Wang, et al., “Spatial temporal incidence dynamic graph
neural networks for traffic flow forecasting”, Information Sciences, vol. 521,
pp. 277–290, 2020.

[132] Z. Peng, Y. Dong, M. Luo, X.-M. Wu, and Q. Zheng, “Self-supervised
graph representation learning via global context prediction”, arXiv preprint
arXiv:2003.01604, 2020.

[133] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and J. Huang, “Graph
representation learning via graphical mutual information maximization”, in
Proceedings of The Web Conference 2020, 2020, pp. 259–270.

[134] A. Pentina, V. Sharmanska, and C. H. Lampert, “Curriculum learning of
multiple tasks”, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 5492–5500.

[135] C. Poignard, T. Pereira, and J. P. Pade, “Spectra of laplacian matrices of
weighted graphs: Structural genericity properties”, SIAM Journal on Applied
Mathematics, vol. 78, no. 1, pp. 372–394, 2018.

[136] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and
J. Tang, “Gcc: Graph contrastive coding for graph neural network pre-
training”, in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 1150–1160.

131

BIBLIOGRAPHY

[137] R. Qiu, H. Yin, Z. Huang, and T. Chen, “Gag: Global attributed graph neural
network for streaming session-based recommendation”, in Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020, pp. 669–678.

[138] S. M. Reich, K. Subrahmanyam, and G. Espinoza, “Friending, iming, and
hanging out face-to-face: Overlap in adolescents’ online and offline social
networks.” Developmental psychology, vol. 48, no. 2, p. 356, 2012.

[139] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks”, Advances in neural information
processing systems, vol. 28, 2015.

[140] E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. Bronstein, and F.
Monti, “Sign: Scalable inception graph neural networks”, arXiv preprint
arXiv:2004.11198, 2020.

[141] N. Sarafianos, T. Giannakopoulos, C. Nikou, and I. A. Kakadiaris, “Curricu-
lum learning of visual attribute clusters for multi-task classification”, Pattern
Recognition, vol. 80, pp. 94–108, 2018.

[142] V. Satuluri and S. Parthasarathy, “Symmetrizations for clustering directed
graphs”, in Proceedings of the 14th International Conference on Extending
Database Technology, 2011, pp. 343–354.

[143] K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko,
and K.-R. Müller, “Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions”, Advances in neural information process-
ing systems, vol. 30, 2017.

[144] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data”, AI magazine, vol. 29, no. 3, pp. 93–
93, 2008.

[145] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph
neural network evaluation”, arXiv preprint arXiv:1811.05868, 2018.

[146] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud”, in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 1711–1719.

132

BIBLIOGRAPHY

[147] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains”, IEEE signal process-
ing magazine, vol. 30, no. 3, pp. 83–98, 2013.

[148] J. Skarding, B. Gabrys, and K. Musial, “Foundations and modeling of
dynamic networks using dynamic graph neural networks: A survey”, IEEE
Access, vol. 9, pp. 79 143–79 168, 2021.

[149] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information
maximization”, arXiv preprint arXiv:1908.01000, 2019.

[150] J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting city-
wide crowd flows in irregular regions using multi-view graph convolutional
networks”, IEEE Transactions on Knowledge and Data Engineering, 2020.

[151] K. Sun, Z. Lin, and Z. Zhu, “Multi-stage self-supervised learning for graph
convolutional networks on graphs with few labeled nodes”, in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 5892–5899.

[152] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, L. He, and B. Li, “Adversarial
attack and defense on graph data: A survey”, arXiv preprint arXiv:1812.10528,
2018.

[153] Q. Sun, J. Li, H. Peng, J. Wu, Y. Ning, P. S. Yu, and L. He, “Sugar:
Subgraph neural network with reinforcement pooling and self-supervised
mutual information mechanism”, in Proceedings of the Web Conference 2021,
2021, pp. 2081–2091.

[154] Q. Sun, H. Peng, J. Li, S. Wang, X. Dong, L. Zhao, S. Y. Philip, and L.
He, “Pairwise learning for name disambiguation in large-scale heterogeneous
academic networks”, in 2020 IEEE International Conference on Data Mining
(ICDM), IEEE, 2020, pp. 511–520.

[155] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision”, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

133

BIBLIOGRAPHY

[156] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding”, in Proceedings of the 24th international
conference on world wide web, 2015, pp. 1067–1077.

[157] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding”, arXiv
preprint arXiv:1906.05849, 2019.

[158] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What makes
for good views for contrastive learning”, arXiv preprint arXiv:2005.10243,
2020.

[159] Z. Tong, Y. Liang, H. Ding, Y. Dai, X. Li, and C. Wang, “Directed graph
contrastive learning”, Advances in Neural Information Processing Systems,
vol. 34, 2021.

[160] Z. Tong, Y. Liang, C. Sun, X. Li, D. Rosenblum, and A. Lim, “Digraph
inception convolutional networks”, Advances in Neural Information Processing
Systems, vol. 33, 2020.

[161] Z. Tong, Y. Liang, C. Sun, D. S. Rosenblum, and A. Lim, “Directed graph
convolutional network”, arXiv preprint arXiv:2004.13970, 2020.

[162] M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lucic, “On mu-
tual information maximization for representation learning”, in International
Conference on Learning Representations, 2019.

[163] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph clustering with
graph neural networks”, arXiv preprint arXiv:2006.16904, 2020.

[164] W. G. Underwood, A. Elliott, and M. Cucuringu, “Motif-based spectral
clustering of weighted directed networks”, Applied Network Science, vol. 5,
no. 1, pp. 1–41, 2020.

[165] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks”, arXiv preprint arXiv:1710.10903, 2017.

[166] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm,
“Deep graph infomax”, arXiv preprint arXiv:1809.10341, 2018.

134

BIBLIOGRAPHY

[167] V. Verma, M. Qu, A. Lamb, Y. Bengio, J. Kannala, and J. Tang, “Graphmix:
Regularized training of graph neural networks for semi-supervised learning”,
arXiv preprint arXiv:1909.11715, 2019.

[168] U. Von Luxburg, “A tutorial on spectral clustering”, Statistics and computing,
vol. 17, pp. 395–416, 2007.

[169] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang,
and Y. Qi, “A semi-supervised graph attentive network for financial fraud
detection”, in 2019 IEEE International Conference on Data Mining (ICDM),
IEEE, 2019, pp. 598–607.

[170] H. Wang, Z. Wei, J. Gan, S. Wang, and Z. Huang, “Personalized pagerank
to a target node, revisited”, in Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, 2020, pp. 657–
667.

[171] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and Z. Wang,
“Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems”, in Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2019, pp. 968–
977.

[172] L. Wang, Z.-H. You, Y.-M. Li, K. Zheng, and Y.-A. Huang, “Gcncda: A
new method for predicting circrna-disease associations based on graph con-
volutional network algorithm”, PLOS Computational Biology, vol. 16, no. 5,
e1007568, 2020.

[173] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang,
C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, and
Z. Zhang, “Deep graph library: Towards efficient and scalable deep learning
on graphs”, ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019. [Online]. Available: https://arxiv.org/abs/1909.01315.

[174] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition
with convolutional neural networks”, in Proceedings of the 21st international
conference on pattern recognition (ICPR2012), IEEE, 2012, pp. 3304–3308.

135

https://arxiv.org/abs/1909.01315

BIBLIOGRAPHY

[175] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge graph
attention network for recommendation”, in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining,
2019, pp. 950–958.

[176] X. Wang and A. Gupta, “Videos as space-time region graphs”, in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 399–417.

[177] X. Wang, Y. Ye, and A. Gupta, “Zero-shot recognition via semantic embed-
dings and knowledge graphs”, in CVPR, 2018, pp. 6857–6866.

[178] Y. Wang, Y. Cai, Y. Liang, H. Ding, C. Wang, S. Bhatia, and B. Hooi,
“Adaptive data augmentation on temporal graphs”, in Advances in Neural
Information Processing Systems, 2021.

[179] Y. Wang, S. Liu, M. Yoon, H. Lamba, W. Wang, C. Faloutsos, and B.
Hooi, “Provably robust node classification via low-pass message passing”, in
2020 IEEE International Conference on Data Mining (ICDM), IEEE, 2020,
pp. 621–630.

[180] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Graphcrop: Subgraph
cropping for graph classification”, arXiv preprint arXiv:2009.10564, 2020.

[181] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Mixup for node and graph
classification”, in Proceedings of the Web Conference 2021, 2021, pp. 3663–
3674.

[182] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi, “Nodeaug:
Semi-supervised node classification with data augmentation”, in KDD, 2020,
pp. 207–217.

[183] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph cnn for learning on point clouds”, Acm Transactions On
Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[184] M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson,
and C. E. Leiserson, “Anti-money laundering in bitcoin: Experimenting
with graph convolutional networks for financial forensics”, arXiv preprint
arXiv:1908.02591, 2019.

136

BIBLIOGRAPHY

[185] Wikipedia, “Laplacian matrix — Wikipedia, the free encyclopedia”, http:
//en.wikipedia.org/w/index.php?title=Laplacian%20matrix&oldid=

1131319168, [Online; accessed 29-January-2023], 2023.

[186] D. P. Williamson, “Orie 6334 bridging continuous and discrete optimiza-
tion”, https://people.orie.cornell.edu/dpw/orie6334/lecture7.pdf,
[Online; accessed 29-January-2023], 2019.

[187] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks”, arXiv preprint arXiv:1902.07153,
2019.

[188] L. Wu, P. Cui, J. Pei, and L. Zhao, “Graph Neural Networks: Foundations,
Frontiers, and Applications”, Singapore: Springer Singapore, 2022, p. 725.

[189] M. Wu, C. Zhuang, M. Mosse, D. Yamins, and N. Goodman, “On mutual
information in contrastive learning for visual representations”, arXiv preprint
arXiv:2005.13149, 2020.

[190] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in
recommender systems: A survey”, ACM Computing Surveys (CSUR), 2020.

[191] X. Wu, E. Dyer, and B. Neyshabur, “When do curricula work?” arXiv preprint
arXiv:2012.03107, 2020.

[192] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehen-
sive survey on graph neural networks”, IEEE transactions on neural networks
and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[193] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks”, arXiv preprint arXiv:1901.00596, 2019.

[194] F. Xiao, C.-M. Li, M. Luo, F. Manya, Z. Lü, and Y. Li, “A branching
heuristic for sat solvers based on complete implication graphs”, Science
China Information Sciences, vol. 62, no. 7, pp. 1–13, 2019.

[195] T. Xiao, X. Wang, A. A. Efros, and T. Darrell, “What should not be con-
trastive in contrastive learning”, arXiv preprint arXiv:2008.05659, 2020.

137

http://en.wikipedia.org/w/index.php?title=Laplacian%20matrix&oldid=1131319168
http://en.wikipedia.org/w/index.php?title=Laplacian%20matrix&oldid=1131319168
http://en.wikipedia.org/w/index.php?title=Laplacian%20matrix&oldid=1131319168
https://people.orie.cornell.edu/dpw/orie6334/lecture7.pdf

BIBLIOGRAPHY

[196] G.-S. Xie, J. Liu, H. Xiong, and L. Shao, “Scale-aware graph neural network for
few-shot semantic segmentation”, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 5475–5484.

[197] T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties”, Physical
review letters, vol. 120, no. 14, p. 145 301, 2018.

[198] Y. Xiong, Y. Zhang, X. Kong, H. Chen, and Y. Zhu, “Graphinception:
Convolutional neural networks for collective classification in heterogeneous
information networks”, IEEE TKDE, 2019.

[199] H. Xu, C. Jiang, X. Liang, and Z. Li, “Spatial-aware graph relation network
for large-scale object detection”, in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[200] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” arXiv preprint arXiv:1810.00826, 2018.

[201] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks”, arXiv
preprint arXiv:1806.03536, 2018.

[202] P. Yanardag and S. Vishwanathan, “Deep graph kernels”, in Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, 2015, pp. 1365–1374.

[203] C. Yang, Z. An, and Y. Xu, “Multi-view contrastive learning for online
knowledge distillation”, in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 3750–
3754.

[204] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text clas-
sification”, in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, 2019, pp. 7370–7377.

[205] C. Ye, R. C. Wilson, C. H. Comin, L. d. F. Costa, and E. R. Hancock,
“Approximate von neumann entropy for directed graphs”, Physical Review E,
vol. 89, no. 5, p. 052 804, 2014.

138

BIBLIOGRAPHY

[206] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems”, in
Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, 2018, pp. 974–983.

[207] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive
learning with augmentations”, Advances in Neural Information Processing
Systems, vol. 33, 2020.

[208] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting”, arXiv preprint
arXiv:1709.04875, 2017.

[209] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method”, arXiv preprint
arXiv:1907.04931, 2019.

[210] C. Zhang, J. James, and Y. Liu, “Spatial-temporal graph attention net-
works: A deep learning approach for traffic forecasting”, IEEE Access, vol. 7,
pp. 166 246–166 256, 2019.

[211] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous
graph neural network”, in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 793–803.

[212] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated
attention networks for learning on large and spatiotemporal graphs”, arXiv
preprint arXiv:1803.07294, 2018.

[213] M. Zhang and Y. Chen, “Link prediction based on graph neural networks”,
Advances in neural information processing systems, vol. 31, 2018.

[214] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks:
A comprehensive review”, Computational Social Networks, vol. 6, no. 1, p. 11,
2019.

[215] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, “Graph neural networks and
their current applications in bioinformatics”, Frontiers in genetics, vol. 12,
2021.

139

BIBLIOGRAPHY

[216] X. Zhang, N. Brugnone, M. Perlmutter, and M. Hirn, “Magnet: A magnetic
neural network for directed graphs”, arXiv preprint arXiv:2102.11391, 2021.

[217] Y. Zhang, X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang, “Every document
owns its structure: Inductive text classification via graph neural networks”,
arXiv preprint arXiv:2004.13826, 2020.

[218] J. Zhao, Z. Zhou, Z. Guan, W. Zhao, W. Ning, G. Qiu, and X. He, “Intentgc:
A scalable graph convolution framework fusing heterogeneous information for
recommendation”, in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2347–2357.

[219] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial
network”, arXiv preprint arXiv:1609.03126, 2016.

[220] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data
augmentation.” In AAAI, 2020, pp. 13 001–13 008.

[221] D. Zhou, T. Hofmann, and B. Schölkopf, “Semi-supervised learning on directed
graphs”, in NIPS, 2005, pp. 1633–1640.

[222] D. Zhou and B. Schölkopf, “A regularization framework for learning from
graph data”, in ICML 2004 Workshop on Statistical Relational Learning and
Its Connections to Other Fields (SRL 2004), 2004, pp. 132–137.

[223] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications”, AI
Open, vol. 1, pp. 57–81, 2020.

[224] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional networks
against adversarial attacks”, in Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2019, pp. 1399–
1407.

[225] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning”,
Synthesis lectures on artificial intelligence and machine learning, vol. 3, no. 1,
pp. 1–130, 2009.

[226] X. J. Zhu, “Semi-supervised learning literature survey”,, 2005.

140

BIBLIOGRAPHY

[227] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph contrastive
learning”, 2021. arXiv: 2109.01116 [cs.LG].

[228] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph contrastive
representation learning”, arXiv preprint arXiv:2006.04131, 2020.

[229] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive
learning with adaptive augmentation”, arXiv preprint arXiv:2010.14945,
2020.

[230] Y. Zhu, Y. Xu, F. Yu, S. Wu, and L. Wang, “Cagnn: Cluster-aware graph neu-
ral networks for unsupervised graph representation learning”, arXiv preprint
arXiv:2009.01674, 2020.

[231] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based
semi-supervised classification”, in Proceedings of the 2018 World Wide Web
Conference, 2018, pp. 499–508.

[232] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural
networks for graph data”, in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2018, pp. 2847–
2856.

141

https://arxiv.org/abs/2109.01116

	Acknowledgments
	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Motivations
	Objectives and Contributions
	Organization

	Literature Review and Preliminaries
	Graph Neural Networks
	General Pipeline
	Learning Tasks
	Graph Types
	Computational Modules
	Learning Methods

	Graph Convolutional Networks
	Spatial-based Methods
	Spectral-based Methods

	Graph Contrastive Learning
	Data Augmentation Framework
	Graph Data Augmentation

	Summary

	Second-order Graph Convolution
	Introduction
	Undirected Graph Convolution and its Limitations
	Undirected Graph Laplacian
	Undirected Graph Convolution
	Usage Limitations on Directed Graph

	Second-order Directed Graph Convolution
	First- and Second-order Proximity
	Second-order Directed Graph Convolution
	Implementation
	Discussion

	Experiments
	Datasets and Baselines
	Experimental Setup
	Experimental Results

	Summary

	PageRank-based Graph Convolution
	Introduction
	PageRank-based Directed Graph Convolution
	Directed Graph Laplacian based on PageRank
	Approximate Directed Graph Laplacian based on Personalized PageRank
	Directed Graph Convolution

	Directed Graph Inception Network
	Scalable Receptive Field based on -order Proximity
	Multi-scale Inception Network Structure

	Experiments
	Experimental Settings
	Semi-supervised Node Classification
	Link Prediction

	Summary

	Contrastive Graph Learning
	Introduction
	Directed Graph Data Augmentation
	Directed Graph Laplacian and its Approximation
	Directed Graph Data Augmentation with Laplacian Perturbation
	Justification of Laplacian Perturbation

	Directed Graph Contrastive Learning
	Learning with Dynamic-view Contrastive Objective
	Training using Multi-task Curriculum Learning

	Experiments
	Experimental Settings
	Experimental Results

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Publications during PhD Study
	Bibliography

