Directed Graph Contrastive Learning Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, Changhu Wang #### Summary We present the first contrastive learning framework for learning directed graph representation. ## Why we need directed graphs? ### Directed structures are everywhere: - Recommender Systems - Biology (LGT) - Traffic Forecasting - Neuroscience Knowledge graph ## **Limitations of Graph Contrastive Learning** Change Structure Directed graph Node dropping **Edge dropping** #### **Data Augmentation Limits** - 1. discard distinctive structural information - 2. overlooks the discrepancy of nodes and edges There is a lack of data augmentation methods specifically designed for directed graphs. #### **Learning Framework Limits** - 1. inability to take full advantage of data augmentation - 2. hand-picking data augmentation parameters Integrating data augmentation into contrastive learning framework is still at early stage. #### Directed Graph Contrastive Learning Framework Original $\mathcal G$ Augmentation Φ Multi-task Curriculum Learning views by Lanlacian perturbation - 1. We first generate M different pairs of contrastive views by Laplacian perturbation. - 2. The different contrastive view pairs are then scored by a scoring function and mapped to different training paces by a pacing function. - 3. Finally, the arranged contrastive view pairs are input into a shared encoder to progressively learn the unsupervised graph representation with contrastive loss. #### **Directed Graph Data Augmentation** Laplacian Perturbation: changing the Laplacian matrix by varying the teleport probability. #### Multi-task Curriculum Learning Utilizes prior knowledge about the difficulty of the learning tasks to learn from easy-to-difficult contrastive views. #### **Brief Experimental Results** #### Node classification task in directed graphs | | Method | DIRECTED | | | UNDIRECTED | | |--------------|--|--|--|--|--|---| | | | CORA-ML | CITESEER | АМ-Рното | PubMed | DBLP | | SUPERVISED | GCN [17]
GAT [46]
APPNP [18] | 70.92 ± 0.39
72.22 ± 0.57
70.31 ± 0.67 | 63.00 ± 0.45
63.73 ± 0.57
61.63 ± 0.63 | 88.52 ± 0.47
88.36 ± 1.25
87.43 ± 0.98 | 78.78 ± 0.30
77.49 ± 0.47
79.35 ± 0.48 | 73.54 ± 0.77
76.08 ± 0.54
77.92 ± 0.75 | | | MagNet [64]
DiGCN [43] | $76.32 \pm 0.10 \underline{77.03 \pm 0.70}$ | 65.04 ± 0.47
64.60 ± 0.60 | 86.80 ± 0.65
88.66 ± 0.51 | $74.23 \pm 0.46 \\ 76.79 \pm 0.49$ | $69.73 \pm 0.98 \\ 73.37 \pm 0.72$ | | UNSUPERVISED | DGI[47]
GMI[32] | $75.21 \pm 1.29 \\ 76.59 \pm 0.35$ | $64.58 \pm 1.78 \\ 63.29 \pm 0.70$ | $85.25 \pm 0.59 \\ 81.12 \pm 0.01$ | $74.11 \pm 0.62 \\ 80.27 \pm 0.16$ | $76.53 \pm 1.24 \\ 76.66 \pm 0.48$ | | | MVGRL[13]
GraphCL [63]
GRACE [68]
GCA [69] | 76.67 ± 0.12 67.34 ± 0.12 73.88 ± 0.25 76.32 ± 0.33 | 62.22 ± 0.02
57.84 ± 0.11
61.20 ± 0.20
63.25 ± 0.10 | 86.15 ± 0.21
67.66 ± 0.05
87.95 ± 0.32
87.35 ± 0.27 | 79.98 ± 0.04
75.29 ± 0.08
79.54 ± 0.05
79.81 ± 0.61 | OOM
77.85 ± 0.22
78.03 ± 0.09
77.83 ± 0.35 | | | Ours + No Curr
Ours + Random
Ours + Anti Curr
Ours + Curr | 75.86 ± 0.09
76.52 ± 1.66
76.12 ± 1.04
77.53 \pm 0.14 | 66.99 ± 0.54
67.15 ± 0.82
66.83 ± 1.13
67.42 ± 0.14 | 87.32 ± 0.14
89.03 ± 0.46
88.83 ± 0.73
89.41 ± 0.11 | 79.57 ± 0.12
80.75 ± 0.10
80.22 ± 0.37
80.69 ± 0.08 | 78.28 ± 0.05 79.58 ± 0.14 79.42 ± 0.15 79.70 ± 0.13 | #### **Augmentation Time** #### Graph Size More info