

Directed Graph Contrastive Learning

Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, Changhu Wang

Summary

We present the first contrastive learning framework for learning directed graph representation.

Why we need directed graphs?

Directed structures are everywhere:

- Recommender Systems
- Biology (LGT)
- Traffic Forecasting
- Neuroscience

Knowledge graph

Limitations of Graph Contrastive Learning

Change Structure

Directed graph

Node dropping

Edge dropping

Data Augmentation Limits

- 1. discard distinctive structural information
- 2. overlooks the discrepancy of nodes and edges

There is a lack of data augmentation methods specifically designed for directed graphs.

Learning Framework Limits

- 1. inability to take full advantage of data augmentation
- 2. hand-picking data augmentation parameters

Integrating data augmentation into contrastive learning framework is still at early stage.

Directed Graph Contrastive Learning Framework

Original $\mathcal G$ Augmentation Φ Multi-task Curriculum Learning

views by Lanlacian perturbation

- 1. We first generate M different pairs of contrastive views by Laplacian perturbation.
- 2. The different contrastive view pairs are then scored by a scoring function and mapped to different training paces by a pacing function.
- 3. Finally, the arranged contrastive view pairs are input into a shared encoder to progressively learn the unsupervised graph representation with contrastive loss.

Directed Graph Data Augmentation

Laplacian Perturbation: changing the Laplacian matrix by varying the teleport probability.

Multi-task Curriculum Learning

Utilizes prior knowledge about the difficulty of the learning tasks to learn from easy-to-difficult contrastive views.

Brief Experimental Results

Node classification task in directed graphs

	Method	DIRECTED			UNDIRECTED	
		CORA-ML	CITESEER	АМ-Рното	PubMed	DBLP
SUPERVISED	GCN [17] GAT [46] APPNP [18]	70.92 ± 0.39 72.22 ± 0.57 70.31 ± 0.67	63.00 ± 0.45 63.73 ± 0.57 61.63 ± 0.63	88.52 ± 0.47 88.36 ± 1.25 87.43 ± 0.98	78.78 ± 0.30 77.49 ± 0.47 79.35 ± 0.48	73.54 ± 0.77 76.08 ± 0.54 77.92 ± 0.75
	MagNet [64] DiGCN [43]	$76.32 \pm 0.10 \underline{77.03 \pm 0.70}$	65.04 ± 0.47 64.60 ± 0.60	86.80 ± 0.65 88.66 ± 0.51	$74.23 \pm 0.46 \\ 76.79 \pm 0.49$	$69.73 \pm 0.98 \\ 73.37 \pm 0.72$
UNSUPERVISED	DGI[47] GMI[32]	$75.21 \pm 1.29 \\ 76.59 \pm 0.35$	$64.58 \pm 1.78 \\ 63.29 \pm 0.70$	$85.25 \pm 0.59 \\ 81.12 \pm 0.01$	$74.11 \pm 0.62 \\ 80.27 \pm 0.16$	$76.53 \pm 1.24 \\ 76.66 \pm 0.48$
	MVGRL[13] GraphCL [63] GRACE [68] GCA [69]	76.67 ± 0.12 67.34 ± 0.12 73.88 ± 0.25 76.32 ± 0.33	62.22 ± 0.02 57.84 ± 0.11 61.20 ± 0.20 63.25 ± 0.10	86.15 ± 0.21 67.66 ± 0.05 87.95 ± 0.32 87.35 ± 0.27	79.98 ± 0.04 75.29 ± 0.08 79.54 ± 0.05 79.81 ± 0.61	OOM 77.85 ± 0.22 78.03 ± 0.09 77.83 ± 0.35
	Ours + No Curr Ours + Random Ours + Anti Curr Ours + Curr	75.86 ± 0.09 76.52 ± 1.66 76.12 ± 1.04 77.53 \pm 0.14	66.99 ± 0.54 67.15 ± 0.82 66.83 ± 1.13 67.42 ± 0.14	87.32 ± 0.14 89.03 ± 0.46 88.83 ± 0.73 89.41 ± 0.11	79.57 ± 0.12 80.75 ± 0.10 80.22 ± 0.37 80.69 ± 0.08	78.28 ± 0.05 79.58 ± 0.14 79.42 ± 0.15 79.70 ± 0.13

Augmentation Time

Graph Size

More info

