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Abstract

Graph Convolutional Networks (GCNs) have shown promising results in modeling
graph-structured data. However, they have difficulty with processing digraphs
because of two reasons: 1) transforming directed to undirected graph to guarantee
the symmetry of graph Laplacian is not reasonable since it not only misleads
message passing scheme to aggregate incorrect weights but also deprives the unique
characteristics of digraph structure; 2) due to the fixed receptive field in each layer,
GCNs fail to obtain multi-scale features that can boost their performance. In this
paper, we theoretically extend spectral-based graph convolution to digraphs and
derive a simplified form using personalized PageRank. Specifically, we present
the Digraph Inception Convolutional Networks (DiGCN) which utilizes digraph
convolution and kth-order proximity to achieve larger receptive fields and learn
multi-scale features in digraphs. We empirically show that DiGCN can encode
more structural information from digraphs than GCNs and help achieve better
performance when generalized to other models. Moreover, experiments on various
benchmarks demonstrate its superiority against the state-of-the-art methods.

1 Introduction

Learning from digraph (directed graph) data to solve practical problems, such as traffic prediction
[25, 36], knowledge discovery [12] and time-series problems [4, 9], has attracted increasing attention.
There are two general categories of GCNs: spatial-based [16, 40] and spectral-based [19, 23, 11].
The spatial-based approaches achieve digraph convolution by using self-defined neighbour traversal
methods to aggregate features, which usually adds significant computational overhead [44, 45, 48].
Correspondingly, spectral-based GCNs [19, 44] use adjacency matrices based on spectrum analysis
theory to explore neighborhood instead of traversal search, which greatly reduces the training time.
However, they are limited to use undirected graphs as input by definition, the graph Laplacian needs
to be symmetric [45]. How to extend spectral-based GCNs to the digraphs needs to be explored.

A majority of spectral-based GCNs transform digraphs to undirected by relaxing its direction structure
[19, 44], i.e., trivially adding edges to symmetrize the adjacency matrices. It will not only mislead
message passing scheme to aggregate the features with incorrect weights but also discard distinctive
direction structure [43], such as irreversible time-series relationships. Besides, there are several works
that learn specific structure by defining motifs [28], inheritance relationship [18] and second-order
proximity[39]. However, these methods have to stipulate learning templates or rules in advance, and
is not capable to deal with complex structures beyond their definitions.
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Besides, most of the existing spectral-based GCNs enhance their capabilities of feature extraction by
stacking a number of graph convolutional layers [22, 13]. However, it often leads to feature dilution
as well as overfitting problem when models become deep [18, 22]. Inspired by Inception Network for
image classification [37], some works [32, 46, 1] widen their layers to obtain larger receptive fields
and increase learning abilities. However, they use the fixed adjacency matrix in one layer, which
increases the difficulty to capture multi-scale features. A scalable neighborhood would be desirable to
provide more scale information, especially for nodes belonging to communities with different sizes.
Moreover, choosing a proper receptive field scheme to fuse multi-scale features together can help
handle complex structures in digraphs.

To address these issues, we first extend the spectral-based graph convolution to digraphs by leveraging
the inherent connections between graph Laplacian and stationary distributions of PageRank [29].
Since original digraph is not necessarily irreducible and aperiodic, the corresponding Markov chain
does not have unique stationary distribution. To solve this problem, we add a chance of teleporting
back to every node based on PageRank. However, the derived digraph Laplacian is too dense, and
it is extremely time-consuming to perform convolution. Thus, referring to personalized PageRank
[3], we introduce an extra auxiliary node as the teleport connected with every node to simplify fully-
connected links in PageRank. The simplified digraph Laplacian can dramatically reduce the number
of edges without changing the properties (irreducible and aperiodic). In addition, we theoretically
analyze its properties and find that our Laplacian is the intermediate form between the undirected and
directed graph, and the degree of conversion is determined by the teleport probability α.

Moreover, inspired by the Inception Network [37], we exploit kth-order proximity between two
nodes in a digraph, which is determined through the shared kth-order neighborhood structures of
these two nodes. This does not require direct kth-hop paths between them. By using this method, we
design scalable receptive fields, which not only allows us to learn features of different sizes within
one convolutional layer but also get larger receptive fields. This notion of proximity also appears in
network analysis (HITS[20, 51]), psychology [30] and daily life: people who have a lot of common
friends are more likely to be friends. In this way, we avoid yielding unbalanced receptive fields
caused by the asymmetric paths in digraphs. Besides that, to obtain r-range receptive field, our model
only requires stacking ⌈logk r⌉ layers instead of r GCN layers in conventional approaches.

Through experiments, we empirically show that Digraph Incpetion Convolutional Networks (DiGCN)
outperforms against competitive baselines. Additionally, our digraph convolution is superior to GCN’s
convolution in the mainstream directed graph benchmarks, especially over 20% accuracy on CORA-
ML dataset. Our implement can be obtained at https://github.com/flyingtango/DiGCN.

2 Digraph Convolution

In this section, we first give the definition of digraph Laplacian based on PageRank, which is too
dense to perform convolution well. We then simplify it by personalized PageRank and analyze its
properties. Finally, we give the definition of digraph convolution based on the above operations.

2.1 Digraph Laplacian based on PageRank

Formally, given a digraph (directed graph) G = (V,E), its adjacency matrix can be denoted as
A = {0,1}n×n, where n = ∣V ∣. The nodes are described by the feature matrix X ∈ Rn×c, with the
number of features c per node. GCN [19] proposes the spectral graph convolution as Zu = ÂuXΘ,
where Zu ∈ Rn×d is the convolved result with output dimension d, Θ ∈ Rc×d is trainable weight
and Âu is the normalized self-looped version of undirected adjacency matrix Au (see [19]). GCN
and its variants need the undirected symmetric adjacency matrix Au as input, therefore, they
transform asymmetric A to symmetric form by relaxing direction structure of digraphs, e.g., let
Au = (A +AT )/2 in their experiments1.

Noticing the inherent connections between graph Laplacian and stationary distributions of PageRank
[29], we can use the properties of Markov chain to help us solve the problem in digraphs. Given a
digraph G = (V,E), a random walk on G is a Markov process with transition matrix Prw = D−1A,

1There are various ways to construct an undirected graph from a digraph. In this paper, we consider one of
the most commonly used methods that averaging edge weights when combination.
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where the diagonal degree matrix D(i, i) = ∑j A(i, j). The G may contain isolated nodes in the
periphery or could be formed into bipartite graph. Thus, Prw is not necessarily irreducible and
aperiodic, we can not guarantee this random walk has unique stationary distribution.

In order to relax this constraint, we slightly modify the random walk to PageRank which adds
a small chance of teleporting back to every node. The PageRank transition matrix is defined as
Ppr = (1−α)Prw +

α
n
1n×n, where α ∈ (0,1) is the teleport probability [8] and be controlled to keep

the probability α
n

in a small range. It is easy to prove Ppr is irreducible and aperiodic, thus, it has a
unique left eigenvector πpr (also called Perron vector) which is strictly positive with eigenvalue 1
according to Perron-Frobenius Theory [5].

The row-vector πpr corresponds to the stationary distribution of Ppr and we have πpr(i) =

∑i,i→j πpr(i)Ppr(i, j). That is, the probability of finding the walk at vertex i is the sum of all
the incoming probabilities from vertices j that have a directed edges to i. Thus, πpr has analogy
property with nodes degree matrix D̃u in undirected graph that reflecting the connectivity between
nodes [15]. Using this property, we define the digraph Laplacian using PageRank Lpr in symmetric
normalized format [10] as follows:

Lpr = I −
1

2
(Π

1
2
prPprΠ

−
1
2

pr +Π
−

1
2

pr PT
prΠ

1
2
pr) , (1)

where we use Πpr =
1

∣∣πpr ∣∣1
Diag(πpr) to replace D̃u in undirected graph Laplacian [19]. In contrast

to Ppr, this matrix is symmetric. Likewise, another work [26] also employs this idea to solve
digraph problem. However, it is defined on the strongly connected digraphs, which is not universally
applicable to any digraphs. Our method can easily generalize to it by α → 0.

Adding a chance of teleporting back to every node guarantees πpr exists and makes Lpr a Rn×n
dense matrix at the same time. Using this Laplacian matrix leads to greatly increase computational
overhead of convolution operation and memory requirement of O (n2) for training (see time usage in
Section 6). To deal with it, we propose a simplified sparse Laplacian using personlized PageRank.

2.2 Approximate Digraph Laplacian based on Personalized PageRank

To solve this issue, reconsider the equation Ppr = (1 − α)Prw +
α
n
1n×n of PageRank. Instead of

viewing it as a combination of the random walk Prw with a fully-connected teleport transition matrix,
we can also view it as a variant of personalized PageRank matrix using all the nodes as teleports. To
retain properties while sparse the Laplacian, we design an auxiliary node scheme.

Using Auxiliary Node as Teleport. More precisely, we introduce an auxiliary node ξ ∉ V as
the personalized PageRank teleport set T = {ξ}. Based on it, we define the transition matrix of
personalized PageRank Pppr in the graph Gppr as follows:

Pppr =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 − α)P̃ α1n×1

1
n
11×n 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Pppr ∈ R(n+1)×(n+1), (2)

where P̃ = D̃−1Ã, Ã = A + In×n denotes the adjacency matrix with added self-loops and D̃(i, i) =

∑j Ã(i, j). Adding self-loops makes Pppr aperiodic due to the greatest common divisor of the
lengths of its cycles is one. Meanwhile, each node in V has a α possibility of linking to ξ and ξ has a
1/n possibility of teleporting back to every node in V , which guarantees Pppr to be irreducible. Thus,
Pppr has a unique left eigenvector πppr ∈ Rn+1 which is strictly positive with eigenvalue 1.

Approximate Digraph Laplacian. Our target is finding the Laplacian of P̃ for spectral analysis,
however, P̃ is not necessarily irreducible, which means the eigenvector π̃ ∈ Rn with the largest
eigenvalue of P̃ is not unique. Thus, we use the stationary distribution of Pppr to approximate the
stationary distribution of P̃. We can split πppr into two parts: πppr = (πappr, πξ), where πappr ∈ Rn is
the unique stationary distribution of the first n points and πξ ∈ R1 is the unique stationary distribution
of the auxiliary node ξ. πappr can converge to stationary distribution of P̃ according to THEOREM 1.

THEOREM 1 Based on the definitions, when teleport probability α → 0, πapprP̃ − πappr → 0.
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We can control α in a small range then simplify Equation 1 to:

Lappr = I −
1

2
(Π̃

1
2 P̃Π̃−

1
2 + Π̃−

1
2 P̃T Π̃

1
2 ) ≈ I −

1

2
(Π

1
2
apprP̃Π

−
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−
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apprP̃
TΠ

1
2
appr) , (3)

where Π̃ = 1
∣∣π̃∣∣1

Diag(π̃) and Πappr =
1

∣∣πappr ∣∣1
Diag(πappr). Note that Lappr retains the graph’s

sparsity of O (∣E ∣). Next, we give the conditions to converge to other forms in THEOREM 2.

THEOREM 2 Based on the above definitions, given an input graph G, when teleport probability α →
1, Πappr →

1
n
⋅ In×n and the approximate digraph Laplacian converges as Lappr → I − 1

2
(P̃ + P̃T ),

which is a trivial-symmetric Laplacian matrix. Specially, if G is undirected, then the approximate
digraph Laplacian converges as Lappr → I − D̃−1Ã, which is a random-walk normalized Laplacian.

Generalization. We show in THEOREM 2 that two common used undirected Laplacian matrices are
special cases of our method under certain conditions: the trivial-symmetric one mentioned in Section
2.1 and random-walk normalized one. When α tends to 1, the form of our method is closer to the
form of undirected graph Laplacian. That is to say α can control the degree of conversion from a
directed form to an undirected form. The smaller α retains the more directed properties, and vice
versa. Proofs of THEOREM 1 and 2 are attached in the Supplementary Material.

2.3 Digraph Convolution

As we have defined the digraph Laplacian in Equation 3 and it is symmetric, we can follow the
spectral analysis in GCN [19] to derive the definition of the digraph convolution as:

Z =
1

2
(Π

1
2
apprP̃Π

−
1
2

appr +Π
−

1
2

apprP̃
TΠ

1
2
appr)XΘ, (4)

where Z ∈ Rn×d is the convolved result with d output dimension, X ∈ Rn×c is node feature matrix
and Θ ∈ Rc×d is trainable weight. Note that we carry out row normalization to the input weighted
adjacency matrix. This propagation scheme has complexity O(∣E ∣cd) which is same with GCN [19],
as digraph Laplacian is sparse and can be calculated during preprocessing.

3 Digraph Inception Network

In this section, first, we introduce kth-order Proximity as scalable receptive field and then we present
DiGCN, a multi-scale inception network, to learn from features of different size in digraphs.

3.1 Scalable Receptive Field for Digraph based on kth-order Proximity

We start by explaining the feature spreading ways in GCNs. Xu et al. [47] have shown that the
information of node i spreads to node j in an analogous random walk manner, which means path
is the way of feature transmission and the size of receptive field is determined by the length of the
path in a graph. However, in digraph, long paths only exist between a few points and are often not
bidirectional, which is not conducive to obtaining global features. Meanwhile, different communities
have various node degrees of in and out, which may cause unbalanced receptive fields (paths) in
digraphs. To solve this problem, we propose kth-order Proximity in digraphs which not only obtains
the node’s features from its directly adjacent nodes, but also extract the hidden information from
kth-order neighbor nodes. That is, if two nodes share common neighhors, they tend to be similar.

DEFINITION 1 kth-order Proximity. Given a graph G = (V,E), for k ⩾ 2, if ∃ e ∈ V and a path
between node i and j ( i, j ∈ V) in this form: vi → ⋯→

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
k−1 edges

ve ← ⋯←
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
k−1 edges

vj , we define this path as kth-order

meeting pathM(k)
i,j . Similarity, the kth-order diffusion path Di,j

(k) is vi ← ⋯←
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
k−1 edges

ve → ⋯→
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
k−1 edges

vj . If

there exist bothMi,j
(k) and Di,j

(k) between node i and j, we think they are kth-order proximity
and e is their kth-order common neighbor. Note that one node is 0th-order proximity with itself and
1st-order proximity with its directly connected neighbors.
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Figure 1: Illustration of DiGCN model. For a digraph G, we use kth-order proximity to generate k
receptive fields based on the input adjacency matrix A shown in the Subfigure (a). Then we convolute
them with input feature matrix Z

(l−1)
I

and gain the output Z
(l)
I

after fusion. We encapsulate this
process as an Inception block shown in the Subfigure (b), where l ∈ Z+ is the number of layers and
the initial input Z

(0)
I

= X. Multi-layer networks can be implemented by stacking Inception blocks.

The schematic of kth -order proximity shows in Figure 1(a). Based on Definition 1, we build a
kth-order proximity matrix to connect similar nodes together.

DEFINITION 2 kth-order Proximity Matrix. In order to model the kth-order proximity, we define
the kth-order proximity matrix P(k)(k ∈ Z) in the graph G:

P(k) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

I k = 0

D̃−1Ã k = 1

Intersect((P(1))
k−1

(P(1)
T

)
k−1

, (P(1)
T

)
k−1

(P(1))
k−1

) /2 k ⩾ 2
. (5)

Ã is the adjacency matrix with self-loops of G and D̃ is corresponding diagonalized degree matrix.
Intersect(⋅) denotes the element-wise intersection of matrices that only when the corresponding
positions have both meeting and diffusion paths, the sum operation is performed, otherwise, it is 0.

The kth-order proximity matrix P(k) is symmetric if k ⩾ 2 because of the intersection operation. k
represents distance between two similar nodes, that is, the size of the receptive fields. We can get
scalable receptive fields by setting different k.

3.2 Multi-scale Inception Network Structure

Based on the proposed kth-order proximity matrix, we define the multi-scale digraph convolution as:

Z(k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

XΘ(0) k = 0
1
2
(Π(1)

1
2 P(1)Π(1)

−
1
2 +Π(1)

−
1
2 P(1)

T
Π(1)

1
2 )XΘ(1) k = 1

W(k)−
1
2 P(k)W(k)−

1
2 XΘ(k) k ⩾ 2

. (6)

Z(k) ∈ Rn×d are convolved results with d output dimension, X ∈ Rn×c is node feature matrix, W(k)

is diagonalized weight matrix of P(k) and Θ(k) ∈ Rc×d is trainable weight. Note that when k = 1,
Z(1) is calculated by digraph convolution with P(1) in Section 2.3 and Π(1) is the corresponding
approximate diagonalized eigenvector.

Inspired by the Inception module proposed in [37], we build the multi-scale digraph Inception
network. We can compare P(k=0) to 1 × 1 convolution kernel and treat Z(k=0) as a skip connection
term carrying non-smoothed features. Moreover, Z(k⩾1) is designed to encode multi-scale directed
structure features. Finally, we use fusion operation Γ to fusion multi-scale features together as an
Inception block ZI :

ZI = σ(Γ(Z(0),Z(1), ...,Z(k))), (7)
where σ is activation function. Fusion function Γ can be various, such as normalization, summation
and concatenation. In practice, we use Γ to keep the feature dimensions unchanged, that is keeping
ZI ∈ Rn×d for stacking the same block. The schematic of Inception block shows in Figure 1(b).
We notice that a recent work SIGN uses a similar Inception structure to handle large scale graph
learning [32]. Differently, they use SGC [44] as basic block which is not applicable to digraphs and
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concatenate these block of different size together into a FC layer. However, concatenation is a kind of
features fusion method, and in some cases, the effect of concatenation is not as good as summation,
we illustrate this in Section 6.

Generalization to other Models. Our method using kth-order proximity to improve the convolution
receptive field has strong generalization ability. In most spectral-based models, we can use our
Inception block to replace the original layer (see Table 1).

Table 1: Our Inception block can generalizate to other models only need to modify some parameters.
Here, Λ is Laplacian eigenvalue matrix defined in ChebNet [11] and Au is the symmetric form of A.

Undigraph Digraph Adj Scale Range Weights Fusion Method

ChebNet [11] ✓ Λ [0,1, .., k] Θ0, ...,Θk Sum
GCN [19] ✓ Au 1 Θ None
SGC [44] ✓ Au k Θ None
SIGN [32] ✓ Au [0,1, .., k] Θ0, ...,Θk Concate

Ours (DiGCN) ✓ ✓ A [0,1, .., k] Θ0, ...,Θk Any Γ

Taking SGC [44] as an example, we can generalize our method to the SGC by replacing the origin
kth -power of adjacency matrix by Inception block. Experimental results in Section 6 show that
integrating our method can help improve accuracy.

Time and Space Complexity. For digraph convolution defined in the Equation 4, we can use a
sparse matrix to store Laplacians. And as we use full batch training, the memory space cost for one
adjacency matrix is O(∣E ∣).

Figure 2: # of edges per Inception block

For Inception block defined in the Equation 7, due to
the asymmetry of the digraphs mentioned in Section
3.1, long paths normally exist between a few points
and are not bidirectional. Thus, using kth-order prox-
imity will get unbalanced receptive field and introduce
computational complexity. Intersection and union of
meeting and diffusion paths both can handle unbal-
ancing problem. We compare the number of edges
per Inception block with different k on CORA-ML [6]
and CITESEER [33] shown in Figure 2 and find that
the edges in kth-order matrix will not increase expo-
nentially and intersection does help to reduce memory
consume. Thus, the memory space cost for one Incep-
tion block in practical is O(k∣E ∣). However, the worst
case does exist when the input graph is undirected and strongly connected. Though it is unsuitable to
our model, which mainly treats reducible digraphs, the worst space complexity is O(k∣V ∣2).

We can calculate eigenvalue decomposition in the Equation 3 during the preprocessing and store
the results, therefore the computational complexity is O(∣V ∣3). At the same time, we use the sparse
matrix multiplication. Thus, we can obtain the complexity of convolution as O(k∣E ∣cd).

4 Related Work

Digraph Convolution. Several works have tried to make GCNs adaptive to digraphs by looking
for structural patterns and reformulate the graph [28, 39, 18]. However, these methods have their
limitations that rely on pre-defined structure examples and can not handle complex structure which
do not appear in the patterns. An alternative method [26] redefines the propagation scheme from
Markov process view, which only apply for strongly connected digraph according to their definition.
Our approach is universally applicable to any digraphs, which is the biggest difference from them.

PageRank in GCNs. Klicpera et al. [21] propose PPNP model which utilize a propagation based
on personalized PageRank to handle feature oversmoothing problem. Besides, the PPRGo [7]
increases the efficiency of PPNP by incorporating multi-hop neighborhood information in a single
step. Note that no matter PPNP or PPRGo, the basic form of their propagation matrices is Appnp =

α (I − (1 − α)Au)
−1, which is quite different from our digraph Laplacian in Equation 3. Furthermore,

they use symmetric matrix Au in the propagation, which means they are not adaptive to digraphs.
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kth-order Proximity and Multi-scale Receptive Field. Previous works have found the powerful
information extraction capabilities of kth-order proximity [38, 38, 51, 39]. However, they only
consider first- and second-order proximity to find hidden information, and our method can adjust the
proximity range as needed. There are several methods to achieve multi-scale receptive field, such
as k-hop method [2, 11, 1, 44] and graph inception [32, 46, 31]. In our model, we use kth-order
proximity instead of the k-hop method because they may create unbalanced receptive filed in digraphs
(see Section 3.1). And the existing graph inception models are not suitable to digraphs (see Table 1).

5 Experimental Settings

We conduct extensive experiments to evaluate the effectiveness of our model. The Supplementary
Material reports further details on the experiments and reproducibility.

Experimental Task. Node classification is a common task used to measure graph models. In this
paper, we adopt the task of Semi-supervised Node Classification in Digraphs to verify the learning
ability of models. Compared with the common experiments for undirected graphs [19, 44, 21, 42],
the challenge is that the given adjacency matrix A is asymmetric, which means message passing
has its direction. Based on the method proposed above, we build several simple models to deal with
this problem. Task definition and specific model structures, including schematics, loss function and
configuration, are included in the Supplementary Material.

Baselines. We compare our model to eight state-of-the-art models that can be divided into four main
categories: 1) spectral-based GNNs including ChebNet [11], GCN [19], SGC [44] , APPNP [21]
and InfoMax [41]; 2) spatial-based GNNs containing GraphSage [16] and GAT [40]; 3) Digraph
GNNs including DGCN [39] (we do not use [26] because it only apply for strongly connected graph
which needs cropping the original dataset to meet its settings); 4) Graph Inception having SIGN
[32]. The descriptions and settings of them are introduced in the Supplementary Material.

Datasets and Splitting. We use several digraph datasets including citation networks: CORA-ML
[6] and CITESEER [33], and Amazon Co-purchase Networks: AM-PHOTO and AM-COMPUTER
[34]. The split of the datasets will greatly affect the performance of the models [34, 21]. Especially
for a single split, not only will it cause overfitting problems during training, but it is also easy to get
misleading results. Thus, in our experiments, we randomly split the datasets and perform multiple
experiments to obtain stable and reliable results. For train/validation/test split, following the rules in
GCN [19], we choose 20 labels per class for training set, 500 labels for validation set and rest for test
set. The detailed descriptions are summarized in the Supplementary Material.

6 Experimental Results

Overall accuracy. The performance comparisons between our model and baselines on four datasets
are reported in Table 2. We train all models for a maximum of 1000 epochs and early stop if the
validation accuracy does not increase for 200 consecutive epochs, then calculate mean test accuracy
with STD in percent (%) averaged over 20 random dataset splits with random weight initialization.

It can be seen easily that our methods achieves the state-of-the-art results on all datasets. Notice that
spectral-based models including ChebNet, GCN, SGC and InfoMax, do not perform well on digraph
datasets compared to their good performance in undirected graphs. This is mainly because these
models have limited ability to obtain features from the surroundings using asymmetric adjacency
matrices. However, APPNP is an exception. It allows features to randomly propagate with a certain
teleport probability, which breaks through the path limitation and achieves good results in digraphs.
The spatial-based method and ours have similar results, which shows that both methods have good
suitability for digraphs. Moreover, DGCN performs well on the most datasets, however, it uses
both in- & out-degree proximity matrix to obtain structural features in digraphs, which leads to out
of memory on AM-COMPUTER. Meanwhile, SIGN uses SGC as the basic module, thus, even if
Inception method is used, SIGN does not perform well in digraphs (see analysis in Section 3.2).

Training time. With the same training settings, we measure the convergence speed of models by
average training time per run in second (s) in Table 2. Apparently, our models have similar results.
Lpr can only be applied to moderately sized graphs, while Lappr scales to large graphs. Compared
with the spectral-based methods, the overall speed of our model without Inception block is similar to
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Table 2: Overall accuracy and training time. "w/ pr" means using Lpr; "w/ appr" means using Lappr;
"w/o IB" means using digraph convolution only; "w/ IB" means using Inception block. The best results
are highlighted with bold and the second are highlighted with underline.

Model CORA-ML CITESEER AM-PHOTO AM-COMPUTER
acc time acc time acc time acc time

ChebNet [11] 64.02 ± 1.5 7.23 56.46 ± 1.4 7.45 80.91 ± 1.0 10.52 73.25 ± 0.8 16.96
GCN [19] 53.11 ± 0.8 4.48 54.36 ± 0.5 4.80 53.20 ± 0.4 4.86 60.50 ± 1.6 5.04
SGC [44] 51.14 ± 0.6 1.92 44.07 ± 3.5 3.58 71.25 ± 1.3 2.31 76.17 ± 0.1 3.68
APPNP [21] 70.07 ± 1.1 6.84 65.39 ± 0.9 6.94 79.37 ± 0.9 6.72 63.16 ± 1.4 6.47
InfoMax [41] 58.00 ± 2.4 4.11 60.51 ± 1.7 4.85 74.40 ± 1.2 31.80 47.32 ± 0.7 41.96
GraphSage [16] 72.06 ± 0.9 6.22 63.19 ± 0.7 6.21 87.57 ± 0.9 8.52 79.29 ± 1.3 14.49
GAT [40] 71.91 ± 0.9 6.02 63.03 ± 0.6 6.12 89.10 ± 0.7 8.83 79.45 ± 1.5 14.66
DGCN [39] 75.02 ± 0.5 6.53 66.00 ± 0.4 6.84 83.66 ± 0.8 36.29 OOM -
SIGN [32] 66.47 ± 0.9 2.81 60.69 ± 0.4 2.96 74.13 ± 1.0 5.33 69.40 ± 4.8 4.97
Ours
w/ pr w/o IB 77.11 ± 0.5 39.13 64.77 ± 0.6 47.19 OOM∗ - OOM -
w/ appr w/o IB 77.01 ± 0.4 2.71 64.92 ± 0.3 2.69 88.72 ± 0.3 2.95 85.55 ± 0.4 4.23
w/ appr w/ IB 80.28 ± 0.5 6.38 66.11 ± 0.7 6.42 90.02 ± 0.5 11.77 85.94 ± 0.5 26.63

* OOM stands for out of memory (see efficiency analysis in Section 2.1)

SGC since the Laplacian is precomputed. On AM-PHOTO and AM-COMPUTER with large scales, our
model is 30% faster on average than GCN. The accuracy of our model improves significantly while
the speed decreases after using Inception, which is consistent with complexity analysis in Section 3.2.

Ablation study. We validate the effectiveness of the components and the resulting ACC are shown in
Table 2. Comparing model with Lappr and model with Lpr, we find that the approximate method can
not only achieve the similar accuracy but also save training time and memory. Meanwhile, we find
that the combination of Lappr and Inception block brings significant improvement in accuracy. This
substantially validate that scalable receptive fields do help to learn features from neighborhood.

Effect of teleport probability α. Figure 3(a) shows the effect of the hyperparameter α on the test
accuracy and structural retention. Referring to the assumption in Section 2.2, we define structural
retention as S = KL(πappr, πapprP̃)−1, where KL means KL divergence. We use S to measure
how much directed structural information retained after approximation. The smaller S, the less
information remain. According to Theorem 1 that α needs to be close to 0 to retain digraph structural
information in Laplacian, however, we find that a higher α improves accuracy slightly. In view of
this, we choose α ∈ [0.05,0.2] to balance structural retention and accuracy. α should be adjusted for
the different datasets [21], but in order to maintain consistency, we take α = 0.1 in all experiments.

Link prediction in digraphs. We use link prediction task in digraphs to show that our model is
able to obtain more structural information. In this task, we split the edges of a digraph into positive
and negative train/val/test edges and compare the results with GCN over 20 runs for a maximum of
500 epochs. Figure 3(b) shows that that our model (w/ appr and w/o IB) outperforms GCN for link
prediction on all datasets. This is mainly because we take the direction of the edges into account
when calculating Lappr, which allows us to obtain more accurate structural information in digraphs.

Training time at different graph scales. We report results for the mean training time in millisecond
(ms) per epoch for 200 epochs on simulated random graphs using digraph convolution. We construct
a simple random graph with N nodes and assign 2N edges uniformly at random. We take the node
index matrix as input feature matrix and give the same label for every node. Figure 3(c) summarizes
the results and shows that our model can handle about 10 million nodes in one GPU (11GB).

(a) (b) (c)
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Figure 3: (a) effect of α to ACC and structural retention S; (b) link prediction results on different
datasets; (c) training time per epoch on random digraphs with difference size.
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(a) (b) (c)

*

Figure 4: (a) effects of model width k ; (b) fusion and activation functions on AM-PHOTO in different
layers (* stands for unable to converge); (c) generalization to SGC using different k.

Depth and width of Inception block. How to balance the model depth and width becomes a vital
issue for Inception block. Figure 4(a) shows that for a single layer model, the improvement in val
accuracy is not significant for k > 2, which means larger receptive field cannot obtain more effective
information on small-scale dataset CITESEER. Then, we keep k = 2 and carry out grid search on
model depth and choose layer=3. To intuitively compare the impact of depth under the same receptive
range, we choose GAT as baseline, which can obtain various range by adjusting the head size without
stacking layers. From Table 3, we can observe that larger receptive fields help our model to perform
better. It is consistent that using a moderate number of layers is enough to effectively learn features.

Table 3: Results under various depths. Our model sets k = 2, and uses Lappr as Laplacian and Sum as
fusion operation. "Range" means range of receptive field. The best results are highlighted with bold.

Methods Range Settings CORA-ML CITESEER AM-PHOTO AM-COMPUTER

GAT [40] 2 head=2 71.33 ± 1.4 63.33 ± 0.7 81.12 ± 1.5 75.12 ± 3.2
Ours layer=1 72.14 ± 1.0 62.89 ± 0.4 75.43 ± 0.5 64.17 ± 0.5
GAT [40] 4 head=4 71.65 ± 1.0 63.30 ± 0.7 86.03 ± 1.0 77.57 ± 1.5
Ours layer=2 76.62 ± 0.5 63.98 ± 0.5 87.71 ± 0.9 82.36 ± 0.7
GAT [40] 8 head=8 71.62 ± 0.8 63.17 ± 0.6 87.04 ± 1.0 78.22 ± 1.7
Ours layer=3 80.28 ± 0.5 66.11 ± 0.7 90.02 ± 0.5 85.94 ± 0.5
GAT [40] 16 head=16 71.91 ± 0.9 63.03 ± 0.6 89.10 ± 0.7 79.45 ± 1.5
Ours layer=4 79.95 ± 0.8 64.00 ± 1.0 89.81 ± 0.9 83.36 ± 0.7

Fusion operation and activation function. We show results in Figure 4(b) and use Sum and
Concate to represent Summation and Concatenation respectively. We find that the choices of fusion
and activation functions need to match the complexity of the model. When the model is shallow,
Concate performs better due to more parameters. Sum achieves better results in deep model because
it requires fewer parameters, which helps prevent the model from overfitting. Since we use kth-order
proximate IB, linear combinations can achieve stable results on smaller datasets. Using a non-linear
activation function (ReLU) may result in models that are too complex to learn features effectively.

Generalization to other model (SGC). To test the generalization ability of our Inception block,
we use it to replace the origin layer in SGC [44]. The generalized SGC model is denoted by
SGC+DiGCN. In addition, we test the case of k = 1 and k = 2 to the generalized model and
the results are shown in Figure 4(c). Obviously, whether k = 1 or k = 2 our generalized model
outperforms the original model on all datasets, which shows that the multi-scale receptive field helps
the model obtain more surrounding information. Meanwhile, our method has good generalization
ability because of its simple structure that can be plugged into existing models easily.

7 Conclusion and Future Work

In this paper, we present a novel Digraph Inception Convolutional Networks (DiGCN), which can
effectively learn digraph representation. We theoretically extend spectral-based graph convolution
to digraph and further simplify it. Besides, we define kth-order proximity and design the digraph
Inception networks to learn multi-scale features. This simple and scalable model can not only learn
digraph structure, but also get hidden information through kth-order proximity relationship. Finally,
we use several tasks on various real-world datasets to validate the effectiveness and generalization
capability of our model. The results show that our model outperforms several state-of-the-art methods.

Due to the full batch training, our model can not be applied to large-scale graphs and we will consider
adapting it to mini-batch training in the future. In addition, we will study how to combine our model
with existing models to solve more complex tasks, e.g., computer vision and NLP.
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Broader Impact

GCNs could be applied to a wide range of applications, including image segmentation [27], speech
recognition [14], recommender system [17], point cloud [50, 24], traffic prediction [25] and many
more [45]. Our method can help to expand the graph types from undirected to directed in the above
application scenarios and obtain multi-scale features from the high-order hidden directed structure.

For traffic prediction, our method can be used in map applications to obtain more fine-grained and
accurate predictions. This requires users to provide location information, which has a risk of privacy
leakage. The same concerns also arise in social network analysis [38], person re-ID [35] and NLP
[49], which use graph convolutional networks as their feature extraction methods. Another potential
risk is that our model may be adversarial attacked by adding new nodes or deleting existing edges.
For example, in a graph-based recommender system, our model may produce completely different
recommendation results due to being attacked.

We see opportunities for research applying DiGCN to beneficial purposes, such as investigating
the ability of DiGCN to discover hidden complex directed structure, the limitation of approximate
method based on personalized PageRank and the feature oversmoothing problem in digraphs. We also
encourage follow-up research to design derivative methods for different tasks based on our method.
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[41] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph
infomax,” arXiv preprint arXiv:1809.10341, 2018.

[42] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Graphcrop: Subgraph cropping for graph
classification,” arXiv preprint arXiv:2009.10564, 2020.

[43] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi, “Nodeaug: Semi-supervised node
classification with data augmentation,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 207–217.

[44] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger, “Simplifying graph
convolutional networks,” arXiv preprint arXiv:1902.07153, 2019.

[45] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph
neural networks,” arXiv preprint arXiv:1901.00596, 2019.

[46] Y. Xiong, Y. Zhang, X. Kong, H. Chen, and Y. Zhu, “Graphinception: Convolutional neural net-
works for collective classification in heterogeneous information networks,” IEEE Transactions
on Knowledge and Data Engineering, 2019.

[47] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Representation learning
on graphs with jumping knowledge networks,” arXiv preprint arXiv:1806.03536, 2018.

[48] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating explana-
tions for graph neural networks,” in NIPS, 2019, pp. 9240–9251.

[49] N. Zhang, S. Deng, Z. Sun, G. Wang, X. Chen, W. Zhang, and H. Chen, “Long-tail relation
extraction via knowledge graph embeddings and graph convolution networks,” arXiv preprint
arXiv:1903.01306, 2019.

[50] Y. Zhao, Y. Wu, C. Chen, and A. Lim, “On isometry robustness of deep 3d point cloud models
under adversarial attacks,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 1201–1210.

[51] D. Zhou, T. Hofmann, and B. Schölkopf, “Semi-supervised learning on directed graphs,” in
NIPS, 2005, pp. 1633–1640.

12


	Introduction
	Digraph Convolution
	Digraph Laplacian based on PageRank
	Approximate Digraph Laplacian based on Personalized PageRank
	Digraph Convolution

	Digraph Inception Network
	Scalable Receptive Field for Digraph based on  -order Proximity
	Multi-scale Inception Network Structure

	Related Work
	Experimental Settings
	Experimental Results
	Conclusion and Future Work

