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Summary )
We make GCNs available in digraphs and propose an

@ception network to learn multi-scale features in digraphﬁ

4 Why digraphs (directed graphs)? )
Directed structures are everywhere:

« Recommender Systems * Biology (LGT)
 Traffic Forecasting * Neuroscience

Road network Knowledge graph

\Directed graph structure is vital and undeveloped! J

4 A

Limitations of spectral-based GCNs

symmetric
transform

digraph

adjacency matrix

The adjacency matrix needs to be symmetric
to use spectral graph convolutions.

Naive symmetric transform is not reasonable.
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The unique structure of the digraph makes it

difficult to obtain long-range (global) features.
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Digraph Convolution
Theoretically define spectral digraph convolution.

Digraph Laplacian based on PageRank:
Given a digraph G and its adjacency matrix A, P, = DA

Using PageRank to make ( irreducible and aperiodic
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Further simplify it using personalized PageRank:
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Generalize to other forms: ‘
(X is the degree of conversion a—1
from a directed form to undirected.
N G is undirected ! (f> N f)T)

undirected random-walk form trivial-symmetric form

Spectral Digraph Convolution:
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Receptive field would be unbalanced and limited.
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Digraph Inception Convolutional Networks
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Digraph Inception Networks
Key idea: friends’ friends tend to be mine friends.
Design k! -order Proximity in digraphs
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Brief Experimental Results )

Semi-supervised node classification in digraphs

Table 1: Overall accuracy and training time. "w/ pr" means using L,,; "w/ appr" means using Ly ;
"w/o IB" means using digraph convolution only; "w/ IB" means using Inception block. The best
results are highlighted with bold and the second are highlighted with underline.

CORA-ML CITESEER AM-PHOTO AM-COMPUTER
Model : ' ' .
dCcC time daCC time dCC time daCC time
ChebNet 64.02+1.5 7.23 56.46 + 1.4 7.45 80.91+1.0 1052 | 73.25+0.8 16.96
GCN 53.11 + 0.8 4.48 54.36 + 0.5 4.80 53.20+0.4 4.86 60.50+ 1.6 5.04

SGC 51.14+06 192 | 44.07+3.5 358 | 71.25+1.3 231 | 76.17+0.1  3.68

APPNP 70.07+1.1 684 | 65.39+£0.9 694 | 7937+09 672 | 63.16+1.4 6.47
InfoMax 58.00+2.4 411 | 60.51+1.7 485 | 74.40+1.2 31.80 | 47.32+0.7 41.96
GraphSage 72.06+09 622 | 63.19£0.7 6.21 | 87.57+09 852 | 79.29+1.3 1449
GAT 71.91+09 6.02 | 63.03£0.6 6.12 | 89.10+0.7 883 | 79.45+1.5 14.66
DGCN 75.02+0.5 653 | 66.00£0.4 6.84 | 83.66+0.8 36.29 OOM -
SIGN 66.47+0.9 281 | 60.69+£04 296 | 74.13+1.0 533 | 69.40+4.8 4.97
Ours

w/pr w/oIB | 77.11+£0.5 39.13 | 64.77+0.6 47.19 OOM* - OOM -
w/apprw/oIB | 77.01+£0.4 271 | 64.92+0.3 269 | 8.72+£0.3 295 | 85.55+04 4.23
w/apprw/ IB | 8028 +0.5 638 | 66.11 +0.7 642 | 90.02+0.5 11.77 | 8594 + 0.5 26.63

" OOM stands for out of memory
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