
Supplementary Material for the Paper: Digraph
Inception Convolutional Networks

Zekun Tong1 Yuxuan Liang2 Changsheng Sun2 Xinke Li1
David S. Rosenblum2,3 Andrew Lim1,∗

1Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
2Department of Computer Science, National University of Singapore, Singapore

3Department of Computer Science, George Mason University, VA, USA
{zekuntong,liangyuxuan,cssun,xinke.li}@u.nus.edu

dsr@gmu.edu, isealim@nus.edu.sg

1 Proof that Ppr and Pppr are Irreducible and Aperiodic

DEFINITION 1. Irreducible and Aperiodic: Given an input G = (V,E), G is irreducible iff for any
two vertices vi, vj ∈ V , there is an integer k ∈ Z+, s.t. Akij > 0. Meanwhile, G is aperiodic iff the
greatest common divisor of the lengths of its cycles is one. The random walk P defined on G has the
same irreducible and aperiodic properties with G.

Proof. For Ppr, since it has a α
n

probability to jump from any point in V to another point, its
corresponding graph is strongly connected and the greatest common divisor of the lengths of graph’s
cycles is 1. Thus, Ppr is irreducible and aperiodic. For Pppr, since it has a auxiliary node ξ which is
connected with every node in V , its corresponding graph is strongly connected. Meanwhile, adding
self-loops makes the greatest common divisor of the lengths of graph’s cycles is 1. Thus, Pppr is
irreducible and aperiodic.

2 Proofs of Theorems

THEOREM 1. Based on the definitions in the paper, given an input graph G and its personalized
PageRank Pppr, when teleport probability α → 0, πapprP̃ − πappr → 0.

Proof. We start out proof from equation πpprPppr = πppr, leading to

[ πappr πξ ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 − α)P̃ α1n×1

1
n
11×n 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [ πappr πξ ] . (1)

Therefore,

(1 − α)πapprP̃ +
1

n
πξ1

1×n
= πappr

απappr1
n×1

= πξ

, (2)

then,
(1 − α)πapprP̃ +

α

n
πappr = πappr (3)

and
πapprP̃ − πappr =

n − 1

n

α

1 − α
πappr. (4)

∗Corresponding author

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Clearly, πappr is upper bounded by ∣∣πappr ∣∣∞ ⩽ 1. Therefore, when α → 0, πapprP̃ − πappr → 0.
The proof is concluded.

THEOREM 2. Based on the definitions in the paper, given an input graph G, when teleport probability
α → 1, Πappr →

1
n
⋅ In×n and the approximate digraph Laplacian converges as Lappr → I − 1

2
(P̃ +

P̃T
), which is a trivial-symmetric Laplacian matrix. Specially, if G is undirected, then the approximate

digraph Laplacian converges as Lappr → I −D−1A, which is a random-walk normalized Laplacian.

Proof. From the Equation 2 above, we obtain

απappr1
n×1

= πξ, (5)

and πppr = (πappr, πξ) is the stationary distribution of Pppr, thus, πappr1n×1 = 1 − πξ and

πξ =
α

1 + α
. (6)

Then, we have

(1 − α)πapprP̃ +
1

n

α

1 + α
11×n

= πappr. (7)

Therefore,

πappr

∣∣πappr ∣∣1
=

(1 − α)πapprP̃ +
1
n

α
1+α11×n

1 − πξ

=

(1 − α)πapprP̃ +
1
n

α
1+α11×n

1
1+α

= (1 − α)(1 + α)πapprP̃ +
1

n
α11×n

. (8)

Since πappr is stationary distribution and P̃ is transition matrix, ∣∣πapprP̃∣∣∞ ⩽ ∣∣πappr ∣∣∞∣∣P̃∣∣∞ ⩽ 1.
It is easy to show when α → 1, πappr

∣∣πappr ∣∣1
→

1
n
11×n and Πappr =

1
∣∣πappr ∣∣1

Diag(πappr) →
1
n
⋅ In×n.

Besides, for Lappr as follows

Lappr ≈ I −
1

2
(Π

1
2
apprP̃Π

− 1
2

appr +Π
− 1

2
apprP̃

TΠ
1
2
appr) , (9)

when α → 1,

Lappr → I −
1

2
(

1
√

n
P̃
√

n +
1

√

n
P̃T√n)

→ I −
1

2
(P̃ + P̃T

)

(10)

Meanwhile, in the case that G is undirected, P̃ is symmetric and P̃ = P̃T
= D̃−1Ã, Lappr coverages

to random walk form of Ã:

Lappr → I − D̃−1Ã. (11)

We find that Lappr converges to the random walk form I− D̃−1Ã of graph G. The proof is concluded.

3 Reproducibility Details

To support the reproducibility of the results in this paper, we detail datasets, the baseline settings
pseudocode and model implementation in experiments. We implement the DiGCN and all the
baseline models using the python library of PyTorch 1, Pytorch-Geometric [2] and DGL 0.3 2. All
the experiments are conducted on a server with one GPU (NVIDIA RTX-2080Ti), two CPUs (Intel
Xeon E5 * 2) and Ubuntu 16.04 System.

1https://pytorch.org
2https://www.dgl.ai

2



3.1 Datasets Details

We use four open access datasets to test our method. Label rate is the fraction of nodes in the training
set per class. We use 20 labeled nodes per class to calculate the label rate.

Table 1: Datasets Details

Datasets Nodes Edges Classes Features Label rate

CORA-ML 2995 8416 7 2879 4.67%
CITESEER 3312 4715 6 3703 3.62%

AM-PHOTO 7650 143663 8 745 2.10%
AM-COMPUTER 13752 287209 10 767 1.45%

3.2 Baselines Details and Settings

The baseline methods are given below:

• ChebNet [1]: It redefines graph convolution using Chebyshev polynomials to remove the time-
consuming Laplacian eigenvalue decomposition.

• GCN [4]: It has multi-layers which stacks first-order Chebyshev polynomials as graph convolution
layer and learns graph representations use a nonlinear activation function.

• SGC [11]: It removes nonlinear layers by using 2-hop adjacency matrix as replacement and collapse
weight matrices to reduce computational consumption.

• APPNP [5]: It utilizes a new propagation scheme based on personalized PageRank to handle feature
oversmoothing problem.

• InfoMax [10]: It relies on maximizing local mutual infomation and works in an unsupervised way
which can be applied to both transductive and inductive learning setups.

• GraphSage [3]: It proposes a general inductive framework that can efficiently generate node
embeddings for previously unseen data

• GAT [9]: It applies attention mechanism to assign different weights to different neighborhood nodes
based on node features.

• DGCN [8]: It combines first- & second-order proximity matrices together to learn directed features.

• SIGN [6]: It proposes a Inception-like structure which uses SGC as basic block and concatenate
these block of different size together into a FC layer.

For all baseline models, we use their model structure in the original papers, including layer number,
activation function selection, normalization and regularization selection, etc. It is worth noting that
GraphSage has three variants in the original article using different aggregators: mean, meanpool
and maxpool. In this paper, we use mean as its aggregator since it performs best [7]. Detailed
hyper-parameter settings are shown in Table 2.

Table 2: The hyper-parameters of baselines.

Model layers lr weight-decay dropout hidden dimension Others

ChebNet 2 0.01 5e-4 0.5 CORA-ML & CITESEER:16
others:64 num-hop=2

GCN 2 0.01 5e-4 0.5 64 -
SGC 1 0.1 5e-4 0.5 - power-times=2
APPNP 2 0.01 5e-4 0.5 64 α = 0.1
InfoMax 1 0.001 5e-4 0 2048 max-LR-iter=150

GraphSage 2 0.005 5e-4 0.6 CORA-ML & CITESEER:16
others:64 mean

GAT 2 0.005 5e-4 0.6 CORA-ML & CITESEER:8
others:32 heads=16

DGCN 2 0.01 5e-4 0.5 64 concatenation
SIGN 2 0.1 5e-4 0.5 64 k = 2

3



3.3 Pseudocode

Algorithm 1: Digraph convolution procedure
Input: Digraph adjacency matrix: A, features matrix: X, learnable weights: Θ
Output: Convolution result Z

1 Initialize Θ;
2 Ã←A + In×n ;
3 P̃← D̃−1Ã ;
4 Pppr ← AddAuxNode(P̃);
5 πppr ← LeftEVD(Pppr);
6 πappr ← πppr(1 ∶ n);
7 Πappr ←

1
∣∣πappr ∣∣1

Diag(πappr);

8 Z← 1
2
(Π

1
2
apprP̃Π

− 1
2

appr +Π
− 1

2
apprP̃

TΠ
1
2
appr)XΘ;

9 return Z

Algorithm 2: DiGCN procedure
Input: Digraph adjacency matrix: A, features matrix: X, width of Inception block k ;
activatation function: σ, fusion function Γ, learnable weights: {Θ0,Θ1, ...,Θk

}

Output: Convolution result ZI
1 Initialize {Θ0,Θ1, ...,Θk

};
2 for i← 0 to k do
3 if i = 0 then
4 P(i) ← I
5 end
6 else if i = 1 then
7 D← RowSum(A), P(i) ←D−1A;
8 end
9 else

10 P(i) ← Intersect(P(i−1)P(1)
T
,P(1)

T
P(i−1))/2;

11 D(i) ← RowSum(P(i));
12 end
13 end
14 for j ← 0 to k do
15 if j = 0 then
16 Z(0) ←XΘ(0)

17 end
18 else if j = 1 then

19 Z(1) ← 1
2
(Π(1)

1
2 P(1)Π(1)

− 1
2
+Π(1)

− 1
2 P(1)

T
Π(1)

1
2
)XΘ(1)

20 end
21 else
22 Z(j) ←D(j)

− 1
2 P(j)D(j)

− 1
2 XΘ(j)

23 end
24 end
25 ZI ← σ(Γ(Z(0),Z(1), ...,Z(k)));
26 return ZI

4



3.4 Implementation for Digraph Semi-supervised Node Classification

In this section, we implement our model to solve digraph semi-supervised node classification task.
More specifically, how to mine the similarity between node class using adjacency matrix A when
there is no graph structure information in node feature matrix X. We are ready to define our task.

DEFINITION 2. Digraph Semi-Supervised Node Classification. Given a digraph G = (V,E) with
adjacency matrix A, and node feature matrix X ∈ Rn×c, where n = ∣V∣ is the number of nodes and c
is the feature dimension. Given a subset of nodes Vl ⊂ V , where nodes in Vl have observed labels and
generally ∣Vl∣ << ∣V∣. The task is using the labeled subset Vl, node feature matrix X and adjacency
matrix A predict the unknown label in Vul = V ∖ Vl.

For this task, we first build a two layer network model on digraphs which only use digraph convolution.
We schematically show the model in Figure 1 and use DiGCL to represent digraph convolution layer.
Our model can be written in the following form of forward propagation:

Â =
1
2
(Π

1
2
apprP̃Π

− 1
2

appr +Π
− 1

2
apprP̃

TΠ
1
2
appr)

Y = softmax (Â(ReLU(ÂXΘ(0))Θ(1))
. (12)

Figure 1: The schematic depiction of model using only digraph convolution. Model inputs are the
adjacent matrix A and features matrix X, while outputs are labels of predict nodes Y.

Moreover, we build DiGCN model using kth-order proximity as Inception block, which can be
written in the following form of forward propagation:

Z
(l)
I = σ(Γ(Z(0),Z(1), ...,Z(k))(l−1))

YI = softmax (Z
(l)
I )

, (13)

where l ∈ Z+ is the number of layers and (⋅)
(l) represents the weights of lth layer. The activation

function σ and the fusion function Γ are chose differently according to the experiments in the paper.
We show the model in Figure 2.

Figure 2: The schematic depiction of DiGCN for semi-supervised learning. Model inputs are an
adjacent matrix A and a features matrix X, while outputs are labels of predict nodes YI .

We do grid search on the hyperparameters: lr in range [0.001, 0.1], weight decay in range [1e-5, 1e-3]
and dropout rate in range [0.3,0.8] and use all labeled examples to evaluate the cross-entropy error
for semi-supervised node classification task. The val accuracy on CORA-ML and AM-PHOTO with
the number of layers and hidden dimension are shown in the Figure 3(a,b) respectively. Detailed
hyper-parameter settings of out models are shown in Table 3.

5



(a) Cora-ML (b) Am-Photo

Figure 3: Val accuracy on CORA-ML and AM-PHOTO

Table 3: The hyper-parameters of our models. "w/ pr" means digraph convolution using Lpr; "w/
appr" means digraph convolution using Lappr; "w/o IB" means using 1st-order proximity digraph
convolution only; "w/ IB" means using Inception block.

Our models layers lr weight-decay dropout hidden dimension Others
w/ pr w/o IB 2 0.05 1e-4 0.5 64 α = 0.1
w/ appr w/o IB 2 0.05 1e-4 0.5 64 α = 0.1
w/ appr w/ IB 3 0.01 5e-4 0.6 32 α = 0.1, k = 2

3.5 Implementation for Link Prediction Task in Digraphs

We implement the link prediction task using the Pytorch-Geometric 1. The ratio of positive validation
edges is 0.05 and the ratio of positive test edges is 0.1. We do not use early stop and obtain the mean
and std that are calculated for 20 random dataset splits and a maximum number of epochs of 500.

Table 4: The hyper-parameters of link prediction models.

Models layers lr hidden dimension output dimension activation function Others
GCN 2 0.01 128 64 ReLU -
DiGCN 2 0.01 128 64 ReLU α = 0.1

References
[1] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs

with fast localized spectral filtering,” in NIPS, 2016, pp. 3844–3852.

[2] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[3] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in
NIPS, 2017, pp. 1024–1034.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[5] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks
meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[6] E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. Bronstein, and F. Monti, “Sign: Scalable
inception graph neural networks,” arXiv preprint arXiv:2004.11198, 2020.

[7] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” arXiv preprint arXiv:1811.05868, 2018.

1https://github.com/rusty1s/pytorch_geometric

6



[8] Z. Tong, Y. Liang, C. Sun, D. S. Rosenblum, and A. Lim, “Directed graph convolutional
network,” arXiv preprint arXiv:2004.13970, 2020.

[9] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” arXiv preprint arXiv:1710.10903, 2017.

[10] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph
infomax,” arXiv preprint arXiv:1809.10341, 2018.

[11] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger, “Simplifying graph
convolutional networks,” arXiv preprint arXiv:1902.07153, 2019.

7


	Proof that   and   are Irreducible and Aperiodic
	Proofs of Theorems
	Reproducibility Details
	Datasets Details
	Baselines Details and Settings
	Pseudocode
	Implementation for Digraph Semi-supervised Node Classification
	Implementation for Link Prediction Task in Digraphs


